kewang-xlnx de0526f668
[Misc][Quark] Upstream Quark format to VLLM (#10765)
Signed-off-by: kewang-xlnx <kewang@xilinx.com>
Signed-off-by: kewang2 <kewang2@amd.com>
Co-authored-by: kewang2 <kewang2@amd.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-01-15 11:05:15 -05:00

609 lines
23 KiB
Python

# Adapted from
# https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/blob/main/modeling_exaone.py
# Copyright 2024 The LG U+ CTO AI Tech Lab.
# Copyright 2021 The LG AI Research EXAONE Lab
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Exaone model compatible with HuggingFace weights."""
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
import torch
from torch import nn
from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.exaone import ExaoneConfig
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (PPMissingLayer, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
class ExaoneGatedMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=hidden_size,
output_sizes=[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.c_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.c_proj(x)
return x
class ExaoneAttention(nn.Module):
def __init__(
self,
config: ExaoneConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
cache_config: Optional[CacheConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
self.head_dim = getattr(config, "head_dim",
self.hidden_size // self.total_num_heads)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.out_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
is_neox_style = True
if quant_config is not None and quant_config.get_name() == "gguf":
is_neox_style = False
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=is_neox_style,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.out_proj(attn_output)
return output
class ExaoneBlockAttention(nn.Module):
def __init__(
self,
config: ExaoneConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
cache_config: Optional[CacheConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.attention = ExaoneAttention(
config=config,
hidden_size=hidden_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=bias,
cache_config=cache_config,
prefix=f"{prefix}.attention",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
return self.attention(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
class ExaoneDecoderLayer(nn.Module):
def __init__(
self,
config: ExaoneConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
# Support abacusai/Smaug-72B-v0.1 with attention_bias
# Support internlm/internlm-7b with bias
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False)
self.attn = ExaoneBlockAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(config, "num_key_value_heads",
config.num_attention_heads),
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=attention_bias,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
self.mlp = ExaoneGatedMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.activation_function,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
prefix=f"{prefix}.mlp",
)
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
else:
hidden_states, residual = self.ln_1(hidden_states, residual)
hidden_states = self.attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
# Fully Connected
hidden_states, residual = self.ln_2(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class ExaoneModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.padding_idx = config.pad_token_id
lora_vocab = ((lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0)
self.vocab_size = config.vocab_size + lora_vocab
self.wte = config.vocab_size
if get_pp_group().is_first_rank or (config.tie_word_embeddings
and get_pp_group().is_last_rank):
self.wte = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=quant_config,
)
else:
self.wte = PPMissingLayer()
self.start_layer, self.end_layer, self.h = make_layers(
config.num_hidden_layers,
lambda prefix: ExaoneDecoderLayer(
config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
),
prefix=f"{prefix}.h",
)
if get_pp_group().is_last_rank:
self.ln_f = RMSNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
else:
self.ln_f = PPMissingLayer()
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.h[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i - self.start_layer],
attn_metadata,
residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.ln_f(hidden_states, residual)
return hidden_states
class ExaoneForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"c_fc_0",
"c_fc_1",
],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"out_proj",
"gate_up_proj",
"c_proj",
"wte",
"lm_head",
]
embedding_modules = {
"wte": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
self.quant_config = quant_config
self.transformer = ExaoneModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
if get_pp_group().is_last_rank:
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
quant_config=quant_config,
)
if config.tie_word_embeddings:
self.lm_head.weight = self.transformer.wte.weight
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size,
logit_scale)
else:
self.lm_head = PPMissingLayer()
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors,
inputs_embeds)
return model_output
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".c_fc_0", 0),
(".gate_up_proj", ".c_fc_1", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
# With tie_word_embeddings, we can skip lm_head.weight
# The weight might appear unnecessarily in the files if the model is
# processed with quantization, LoRA, fine-tuning, etc.
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache scales for quark and
# compressed-tensors quantization
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
loaded_weight[0])
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
# If this function is called, it should always initialize KV cache scale
# factors (or else raise an exception). Thus, handled exceptions should
# make sure to leave KV cache scale factors in a known good (dummy) state
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
for layer_idx, scaling_factor in kv_cache_scales_loader(
quantization_param_path,
tp_rank,
tp_size,
self.config.num_hidden_layers,
self.config.__class__.model_type,
):
if not isinstance(self.transformer.h[layer_idx], nn.Identity):
layer_self_attn = self.transformer.h[layer_idx].attn
if current_platform.is_rocm():
# The scaling factor convention we are assuming is
# quantized_value * scaling_factor ~= true_value
# which is consistent with the practice of setting
# scaling_factor = tensor_amax / FPtype_max
scaling_factor *= 2
if hasattr(layer_self_attn.attn, "_k_scale"):
layer_self_attn.attn._k_scale = scaling_factor
layer_self_attn.attn._v_scale = scaling_factor
else:
raise RuntimeError("Self attention has no KV cache scaling "
"factor attribute!")