vllm/tests/basic_correctness/test_cumem.py
Eric Tang ddb94c2605
[core] Add tags parameter to wake_up() (#15500)
Signed-off-by: Eric <erictang000@gmail.com>
2025-04-02 01:59:27 -07:00

179 lines
5.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from vllm import LLM, SamplingParams
from vllm.device_allocator.cumem import CuMemAllocator
from vllm.utils import GiB_bytes
from ..utils import create_new_process_for_each_test
@create_new_process_for_each_test()
def test_python_error():
"""
Test if Python error occurs when there's low-level
error happening from the C++ side.
"""
allocator = CuMemAllocator.get_instance()
total_bytes = torch.cuda.mem_get_info()[1]
alloc_bytes = int(total_bytes * 0.7)
tensors = []
with allocator.use_memory_pool():
# allocate 70% of the total memory
x = torch.empty(alloc_bytes, dtype=torch.uint8, device='cuda')
tensors.append(x)
# release the memory
allocator.sleep()
# allocate more memory than the total memory
y = torch.empty(alloc_bytes, dtype=torch.uint8, device='cuda')
tensors.append(y)
with pytest.raises(RuntimeError):
# when the allocator is woken up, it should raise an error
# because we don't have enough memory
allocator.wake_up()
@create_new_process_for_each_test()
def test_basic_cumem():
# some tensors from default memory pool
shape = (1024, 1024)
x = torch.empty(shape, device='cuda')
x.zero_()
# some tensors from custom memory pool
allocator = CuMemAllocator.get_instance()
with allocator.use_memory_pool():
# custom memory pool
y = torch.empty(shape, device='cuda')
y.zero_()
y += 1
z = torch.empty(shape, device='cuda')
z.zero_()
z += 2
# they can be used together
output = x + y + z
assert torch.allclose(output, torch.ones_like(output) * 3)
free_bytes = torch.cuda.mem_get_info()[0]
allocator.sleep()
free_bytes_after_sleep = torch.cuda.mem_get_info()[0]
assert free_bytes_after_sleep > free_bytes
allocator.wake_up()
# they can be used together
output = x + y + z
assert torch.allclose(output, torch.ones_like(output) * 3)
@create_new_process_for_each_test()
def test_cumem_with_cudagraph():
allocator = CuMemAllocator.get_instance()
with allocator.use_memory_pool():
weight = torch.eye(1024, device='cuda')
with allocator.use_memory_pool(tag="discard"):
cache = torch.empty(1024, 1024, device='cuda')
def model(x):
out = x @ weight
cache[:out.size(0)].copy_(out)
return out + 1
x = torch.empty(128, 1024, device='cuda')
# warmup
model(x)
# capture cudagraph
model_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(model_graph):
y = model(x)
free_bytes = torch.cuda.mem_get_info()[0]
allocator.sleep()
free_bytes_after_sleep = torch.cuda.mem_get_info()[0]
assert free_bytes_after_sleep > free_bytes
allocator.wake_up()
# after waking up, the content in the weight tensor
# should be restored, but the content in the cache tensor
# should be discarded
# this operation is also compatible with cudagraph
x.random_()
model_graph.replay()
# cache content is as expected
assert torch.allclose(x, cache[:x.size(0)])
# output content is as expected
assert torch.allclose(y, x + 1)
@create_new_process_for_each_test()
@pytest.mark.parametrize(
"model, use_v1",
[
# sleep mode with safetensors
("meta-llama/Llama-3.2-1B", True),
# sleep mode with pytorch checkpoint
("facebook/opt-125m", False),
])
def test_end_to_end(monkeypatch: pytest.MonkeyPatch, model: str, use_v1: bool):
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
free, total = torch.cuda.mem_get_info()
used_bytes_baseline = total - free # in case other process is running
llm = LLM(model, enable_sleep_mode=True)
prompt = "How are you?"
sampling_params = SamplingParams(temperature=0, max_tokens=10)
output = llm.generate(prompt, sampling_params)
# the benefit of `llm.sleep(level=2)` is mainly CPU memory usage,
# which is difficult to measure in the test. therefore, we only
# test sleep level 1 here.
llm.sleep(level=1)
free_gpu_bytes_after_sleep, total = torch.cuda.mem_get_info()
used_bytes = total - free_gpu_bytes_after_sleep - used_bytes_baseline
# now the memory usage is mostly cudagraph memory pool,
# and it should be less than the model weights (1B model, 2GiB weights)
# NOTE: In V1, the memory buffer for logits (max_num_reqs x vocab_size)
# is captured but cannot be releasesd from PyTorch due to a known bug,
# therefore high memory usage after `llm.sleep` is called is expected.
# FIXME(youkaichao & ywang96): Fix memory buffer issue with sleep mode
# in V1.
if use_v1:
assert used_bytes < 7 * GiB_bytes
else:
assert used_bytes < 2 * GiB_bytes
llm.wake_up()
output2 = llm.generate(prompt, sampling_params)
# cmp output
assert output[0].outputs[0].text == output2[0].outputs[0].text
llm.sleep(level=1)
llm.wake_up(tags=["weights"])
free_gpu_bytes_wake_up_w, total = torch.cuda.mem_get_info()
used_bytes = total - free_gpu_bytes_wake_up_w - used_bytes_baseline
# should just reallocate memory for weights (1B model, ~2GiB weights)
if use_v1:
assert used_bytes < 10 * GiB_bytes
else:
assert used_bytes < 6 * GiB_bytes
# now allocate kv cache memory
llm.wake_up(tags=["kv_cache"])
output3 = llm.generate(prompt, sampling_params)
# cmp output
assert output[0].outputs[0].text == output3[0].outputs[0].text