126 lines
4.8 KiB
Markdown
126 lines
4.8 KiB
Markdown
# OpenAI Compatible Server
|
|
|
|
vLLM provides an HTTP server that implements OpenAI's [Completions](https://platform.openai.com/docs/api-reference/completions) and [Chat](https://platform.openai.com/docs/api-reference/chat) API.
|
|
|
|
You can start the server using Python, or using [Docker](deploying_with_docker.rst):
|
|
```bash
|
|
python -m vllm.entrypoints.openai.api_server --model NousResearch/Meta-Llama-3-8B-Instruct --dtype auto --api-key token-abc123
|
|
```
|
|
|
|
To call the server, you can use the official OpenAI Python client library, or any other HTTP client.
|
|
```python
|
|
from openai import OpenAI
|
|
client = OpenAI(
|
|
base_url="http://localhost:8000/v1",
|
|
api_key="token-abc123",
|
|
)
|
|
|
|
completion = client.chat.completions.create(
|
|
model="NousResearch/Meta-Llama-3-8B-Instruct",
|
|
messages=[
|
|
{"role": "user", "content": "Hello!"}
|
|
]
|
|
)
|
|
|
|
print(completion.choices[0].message)
|
|
```
|
|
|
|
## API Reference
|
|
Please see the [OpenAI API Reference](https://platform.openai.com/docs/api-reference) for more information on the API. We support all parameters except:
|
|
- Chat: `tools`, and `tool_choice`.
|
|
- Completions: `suffix`.
|
|
|
|
vLLM also provides experimental support for OpenAI Vision API compatible inference. See more details in [Using VLMs](../models/vlm.rst).
|
|
|
|
## Extra Parameters
|
|
vLLM supports a set of parameters that are not part of the OpenAI API.
|
|
In order to use them, you can pass them as extra parameters in the OpenAI client.
|
|
Or directly merge them into the JSON payload if you are using HTTP call directly.
|
|
|
|
```python
|
|
completion = client.chat.completions.create(
|
|
model="NousResearch/Meta-Llama-3-8B-Instruct",
|
|
messages=[
|
|
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
|
|
],
|
|
extra_body={
|
|
"guided_choice": ["positive", "negative"]
|
|
}
|
|
)
|
|
```
|
|
|
|
### Extra Parameters for Chat API
|
|
The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported.
|
|
|
|
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
|
:language: python
|
|
:start-after: begin-chat-completion-sampling-params
|
|
:end-before: end-chat-completion-sampling-params
|
|
```
|
|
|
|
The following extra parameters are supported:
|
|
|
|
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
|
:language: python
|
|
:start-after: begin-chat-completion-extra-params
|
|
:end-before: end-chat-completion-extra-params
|
|
```
|
|
|
|
### Extra Parameters for Completions API
|
|
The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported.
|
|
|
|
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
|
:language: python
|
|
:start-after: begin-completion-sampling-params
|
|
:end-before: end-completion-sampling-params
|
|
```
|
|
|
|
The following extra parameters are supported:
|
|
|
|
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
|
:language: python
|
|
:start-after: begin-completion-extra-params
|
|
:end-before: end-completion-extra-params
|
|
```
|
|
|
|
## Chat Template
|
|
|
|
In order for the language model to support chat protocol, vLLM requires the model to include
|
|
a chat template in its tokenizer configuration. The chat template is a Jinja2 template that
|
|
specifies how are roles, messages, and other chat-specific tokens are encoded in the input.
|
|
|
|
An example chat template for `NousResearch/Meta-Llama-3-8B-Instruct` can be found [here](https://github.com/meta-llama/llama3?tab=readme-ov-file#instruction-tuned-models)
|
|
|
|
Some models do not provide a chat template even though they are instruction/chat fine-tuned. For those model,
|
|
you can manually specify their chat template in the `--chat-template` parameter with the file path to the chat
|
|
template, or the template in string form. Without a chat template, the server will not be able to process chat
|
|
and all chat requests will error.
|
|
|
|
```bash
|
|
python -m vllm.entrypoints.openai.api_server \
|
|
--model ... \
|
|
--chat-template ./path-to-chat-template.jinja
|
|
```
|
|
|
|
vLLM community provides a set of chat templates for popular models. You can find them in the examples
|
|
directory [here](https://github.com/vllm-project/vllm/tree/main/examples/)
|
|
|
|
## Command line arguments for the server
|
|
|
|
```{argparse}
|
|
:module: vllm.entrypoints.openai.cli_args
|
|
:func: create_parser_for_docs
|
|
:prog: -m vllm.entrypoints.openai.api_server
|
|
```
|
|
|
|
## Tool calling in the chat completion API
|
|
vLLM supports only named function calling in the chat completion API. The `tool_choice` options `auto` and `required` are **not yet supported** but on the roadmap.
|
|
|
|
To use a named function you need to define the function in the `tools` parameter and call it in the `tool_choice` parameter.
|
|
|
|
It is the callers responsibility to prompt the model with the tool information, vLLM will not automatically manipulate the prompt. **This may change in the future.**
|
|
|
|
vLLM will use guided decoding to ensure the response matches the tool parameter object defined by the JSON schema in the `tools` parameter.
|
|
|
|
Please refer to the OpenAI API reference documentation for more information.
|