vllm/tests/kernels/test_mamba_ssm_ssd.py
Tyler Michael Smith dbb036cf61
[Bugfix] Fix tests/kernels/test_mamba_ssm_ssd.py (#16623)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-04-15 05:35:38 +00:00

310 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from vllm.model_executor.layers.mamba.mamba2_metadata import (
_seq_idx_to_chunk_indices_offsets)
from vllm.model_executor.layers.mamba.ops.ssd_combined import (
mamba_chunk_scan_combined)
from vllm.platforms import current_platform
# Added by the IBM Team, 2024
# Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/modules/ssd_minimal.py
# this is the segsum implementation taken from above
def segsum(x):
"""Calculates segment sum."""
T = x.size(-1)
x = repeat(x, "... d -> ... d e", e=T)
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool),
diagonal=-1)
x = x.masked_fill(~mask, 0)
x_segsum = torch.cumsum(x, dim=-2)
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool),
diagonal=0)
x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
return x_segsum
def ssd_minimal_discrete(X, A, B, C, block_len, initial_states=None):
"""
Arguments:
X: (batch, length, n_heads, d_head)
A: (batch, length, n_heads)
B: (batch, length, n_heads, d_state)
C: (batch, length, n_heads, d_state)
Return:
Y: (batch, length, n_heads, d_head)
"""
assert X.dtype == A.dtype == B.dtype == C.dtype
assert X.shape[1] % block_len == 0
# Rearrange into blocks/chunks
X, A, B, C = (rearrange(x, "b (c l) ... -> b c l ...", l=block_len)
for x in (X, A, B, C))
A = rearrange(A, "b c l h -> b h c l")
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
L = torch.exp(segsum(A))
Y_diag = torch.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C, B, L, X)
# 2. Compute the state for each intra-chunk
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
states = torch.einsum("bclhn,bhcl,bclhp->bchpn", B, decay_states, X)
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at
# chunk boundaries
# (middle term of factorization of off-diag blocks; A terms)
if initial_states is None:
initial_states = torch.zeros_like(states[:, :1])
states = torch.cat([initial_states, states], dim=1)
decay_chunk = torch.exp(segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0))))
new_states = torch.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
states, final_state = new_states[:, :-1], new_states[:, -1]
# 4. Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
Y_off = torch.einsum('bclhn,bchpn,bhcl->bclhp', C, states, state_decay_out)
# Add output of intra-chunk and inter-chunk terms
# (diagonal and off-diagonal blocks)
Y = rearrange(Y_diag + Y_off, "b c l h p -> b (c l) h p")
return Y, final_state
def generate_random_inputs(batch_size,
seqlen,
n_heads,
d_head,
itype,
device='cuda'):
current_platform.seed_everything(0)
A = (-torch.exp(torch.rand(n_heads, dtype=itype, device=device)))
dt = F.softplus(
torch.randn(batch_size, seqlen, n_heads, dtype=itype, device=device) -
4)
X = torch.randn((batch_size, seqlen, n_heads, d_head),
dtype=itype,
device=device)
B = torch.randn((batch_size, seqlen, n_heads, d_head),
dtype=itype,
device=device)
C = torch.randn((batch_size, seqlen, n_heads, d_head),
dtype=itype,
device=device)
return A, dt, X, B, C
def generate_continous_batched_examples(example_lens_by_batch,
num_examples,
full_length,
last_taken,
exhausted,
n_heads,
d_head,
itype,
device='cuda'):
# this function generates a random examples of certain length
# and then cut according to "example_lens_by_batch" and feed
# them in continuous batches to the kernels
# generate the full-length example
A, dt, X, B, C = generate_random_inputs(num_examples, full_length, n_heads,
d_head, itype)
Y_min, final_state_min = ssd_minimal_discrete(X * dt.unsqueeze(-1),
A * dt,
B,
C,
block_len=full_length // 4)
# internal function that outputs a cont batch of examples
# given a tuple of lengths for each example in the batch
# e.g., example_lens=(8, 4) means take 8 samples from first eg,
# 4 examples from second eg, etc
def get_continuous_batch(example_lens: tuple[int, ...]):
indices = []
for i, x in enumerate(example_lens):
c = last_taken.get(i, 0)
indices.append((c, c + x))
last_taken[i] = (c + x) % full_length
exhausted[i] = last_taken[i] == 0
return (torch.concat([x[i, s:e] for i, (s, e) in enumerate(indices)
]).unsqueeze(0) for x in (dt, X, B, C))
# internal function that maps "n" to the appropriate right boundary
# value when forming continuous batches from examples of length given
# by "full_length".
# - e.g., when n > full_length, returns n % full_length
# when n == full_length, returns full_length
def end_boundary(n: int):
return n - ((n - 1) // full_length) * full_length
IND_E = None
for spec in example_lens_by_batch:
# get the (maybe partial) example seen in this cont batch
dt2, X2, B2, C2 = get_continuous_batch(spec)
# get the metadata
cu_seqlens = torch.tensor((0, ) + spec, device=device).cumsum(dim=0)
seq_idx = torch.zeros(cu_seqlens[-1],
dtype=torch.int32,
device=cu_seqlens.device)
for i, (srt, end) in enumerate(zip(
cu_seqlens,
cu_seqlens[1:],
)):
seq_idx[srt:end] = i
# for cont batch
if IND_E is None:
IND_S = [0 for _ in range(len(spec))]
else:
IND_S = [x % full_length for x in IND_E]
IND_E = [end_boundary(x + y) for x, y in zip(IND_S, spec)]
yield ([Y_min[s, IND_S[s]:IND_E[s]] for s in range(num_examples)],
cu_seqlens, seq_idx.unsqueeze(0), (A, dt2, X2, B2, C2))
@pytest.mark.parametrize("itype",
[torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("n_heads", [3, 4, 11, 16, 32])
@pytest.mark.parametrize("d_head", [5, 8, 19, 32, 128])
@pytest.mark.parametrize("seq_len_chunk_size", [(119, 17), (128, 32)])
def test_mamba_chunk_scan_single_example(d_head, n_heads, seq_len_chunk_size,
itype):
# this tests the kernels on a single example (no batching)
# set seed
batch_size = 1 # batch_size
# ssd_minimal_discrete requires chunk_size divide seqlen
# - this is only required for generating the reference seqs,
# it is not an operational limitation.
seqlen, chunk_size = seq_len_chunk_size
A, dt, X, B, C = generate_random_inputs(batch_size, seqlen, n_heads,
d_head, itype)
Y_min, final_state_min = ssd_minimal_discrete(X * dt.unsqueeze(-1), A * dt,
B, C, chunk_size)
Y, final_state = mamba_chunk_scan_combined(X,
dt,
A,
B,
C,
chunk_size,
D=None,
return_final_states=True)
# just test the last in sequence
torch.allclose(Y[:, -1], Y_min[:, -1], atol=1e-3, rtol=1e-3)
# just test the last head
# NOTE, in the kernel we always cast states to fp32
torch.allclose(final_state[:, -1],
final_state_min[:, -1].to(torch.float32),
atol=1e-3,
rtol=1e-3)
@pytest.mark.parametrize("itype", [torch.float32, torch.float16])
@pytest.mark.parametrize("n_heads", [4, 8, 13])
@pytest.mark.parametrize("d_head", [5, 16, 21, 32])
@pytest.mark.parametrize(
"seq_len_chunk_size_cases",
[
# small-ish chunk_size (8)
(64, 8, 2, [(64, 32), (64, 32)]),
(64, 8, 2, [(32, 32), (32, 32), (32, 32)]),
(64, 8, 2, [(8, 8), (8, 8), (8, 8)]), # chunk size boundary
(64, 8, 2, [(4, 4), (4, 4), (4, 4),
(4, 4)]), # chunk_size larger than cont batches
(64, 8, 5, [
(64, 32, 16, 8, 8),
(8, 16, 32, 16, 8),
(8, 8, 16, 32, 16),
]), # mode examples with varied lengths
# odd chunk_size
(64, 29, 2, [(11, 4), (13, 23), (19, 22),
(21, 15)]), # irregular sizes
# large-ish chunk_size (256)
(64, 256, 1, [(5, ), (1, ), (1, ),
(1, )]), # irregular sizes with small sequences
(64, 256, 2, [(5, 30), (1, 2), (1, 2),
(1, 2)]), # irregular sizes with small sequences
])
def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
itype):
# this test with multiple examples in a continuous batch
# (i.e. chunked prefill)
seqlen, chunk_size, num_examples, cases = seq_len_chunk_size_cases
# hold state during the cutting process so we know if an
# example has been exhausted and needs to cycle
last_taken: dict = {} # map: eg -> pointer to last taken sample
exhausted: dict = {} # map: eg -> boolean indicating example is exhausted
states = None
for Y_min, cu_seqlens, seq_idx, (A, dt, X, B,
C) in generate_continous_batched_examples(
cases, num_examples, seqlen,
last_taken, exhausted, n_heads,
d_head, itype):
chunk_indices, chunk_offsets = _seq_idx_to_chunk_indices_offsets(
seq_idx, chunk_size)
Y, new_states = mamba_chunk_scan_combined(
X,
dt,
A,
B,
C,
chunk_size,
D=None,
cu_seqlens=cu_seqlens,
seq_idx=seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=states,
)
# just test the last in sequence
for i in range(num_examples):
# just test one dim and dstate
Y_eg = Y[0, cu_seqlens[i]:cu_seqlens[i + 1], 0, 0]
Y_min_eg = Y_min[i][:, 0, 0]
torch.allclose(Y_eg, Y_min_eg, atol=1e-3, rtol=1e-3)
# update states
states = new_states
for i, clear in exhausted.items():
if clear:
states[i].fill_(0.)
exhausted[i] = False