vllm/vllm/engine/arg_utils.py
Cyrus Leung d9fc8cd9da
[V1] Enable multi-input by default (#15799)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-12 08:52:39 +00:00

1798 lines
80 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import argparse
import dataclasses
import json
import re
import threading
from dataclasses import MISSING, dataclass, fields
from typing import (TYPE_CHECKING, Any, Dict, List, Literal, Mapping, Optional,
Tuple, Type, Union, cast, get_args, get_origin)
import torch
import vllm.envs as envs
from vllm import version
from vllm.config import (CacheConfig, CompilationConfig, ConfigFormat,
DecodingConfig, DeviceConfig, HfOverrides,
KVTransferConfig, LoadConfig, LoadFormat, LoRAConfig,
ModelConfig, ModelImpl, ObservabilityConfig,
ParallelConfig, PoolerConfig, PromptAdapterConfig,
SchedulerConfig, SpeculativeConfig, TaskOption,
TokenizerPoolConfig, VllmConfig, get_attr_docs)
from vllm.executor.executor_base import ExecutorBase
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.plugins import load_general_plugins
from vllm.reasoning import ReasoningParserManager
from vllm.test_utils import MODEL_WEIGHTS_S3_BUCKET, MODELS_ON_S3
from vllm.transformers_utils.utils import check_gguf_file
from vllm.usage.usage_lib import UsageContext
from vllm.utils import FlexibleArgumentParser, StoreBoolean, is_in_ray_actor
if TYPE_CHECKING:
from vllm.transformers_utils.tokenizer_group import BaseTokenizerGroup
logger = init_logger(__name__)
ALLOWED_DETAILED_TRACE_MODULES = ["model", "worker", "all"]
DEVICE_OPTIONS = [
"auto",
"cuda",
"neuron",
"cpu",
"tpu",
"xpu",
"hpu",
]
def nullable_str(val: str):
if not val or val == "None":
return None
return val
def nullable_kvs(val: str) -> Optional[Mapping[str, int]]:
"""Parses a string containing comma separate key [str] to value [int]
pairs into a dictionary.
Args:
val: String value to be parsed.
Returns:
Dictionary with parsed values.
"""
if len(val) == 0:
return None
out_dict: Dict[str, int] = {}
for item in val.split(","):
kv_parts = [part.lower().strip() for part in item.split("=")]
if len(kv_parts) != 2:
raise argparse.ArgumentTypeError(
"Each item should be in the form KEY=VALUE")
key, value = kv_parts
try:
parsed_value = int(value)
except ValueError as exc:
msg = f"Failed to parse value of item {key}={value}"
raise argparse.ArgumentTypeError(msg) from exc
if key in out_dict and out_dict[key] != parsed_value:
raise argparse.ArgumentTypeError(
f"Conflicting values specified for key: {key}")
out_dict[key] = parsed_value
return out_dict
@dataclass
class EngineArgs:
"""Arguments for vLLM engine."""
model: str = 'facebook/opt-125m'
served_model_name: Optional[Union[str, List[str]]] = None
tokenizer: Optional[str] = None
hf_config_path: Optional[str] = None
task: TaskOption = "auto"
skip_tokenizer_init: bool = False
tokenizer_mode: str = 'auto'
trust_remote_code: bool = False
allowed_local_media_path: str = ""
download_dir: Optional[str] = LoadConfig.download_dir
load_format: str = LoadConfig.load_format
config_format: ConfigFormat = ConfigFormat.AUTO
dtype: str = 'auto'
kv_cache_dtype: str = 'auto'
seed: Optional[int] = None
max_model_len: Optional[int] = None
# Note: Specifying a custom executor backend by passing a class
# is intended for expert use only. The API may change without
# notice.
distributed_executor_backend: Optional[Union[
str, Type[ExecutorBase]]] = ParallelConfig.distributed_executor_backend
# number of P/D disaggregation (or other disaggregation) workers
pipeline_parallel_size: int = ParallelConfig.pipeline_parallel_size
tensor_parallel_size: int = ParallelConfig.tensor_parallel_size
data_parallel_size: int = ParallelConfig.data_parallel_size
enable_expert_parallel: bool = ParallelConfig.enable_expert_parallel
max_parallel_loading_workers: Optional[
int] = ParallelConfig.max_parallel_loading_workers
block_size: Optional[int] = None
enable_prefix_caching: Optional[bool] = None
prefix_caching_hash_algo: str = "builtin"
disable_sliding_window: bool = False
disable_cascade_attn: bool = False
use_v2_block_manager: bool = True
swap_space: float = 4 # GiB
cpu_offload_gb: float = 0 # GiB
gpu_memory_utilization: float = 0.90
max_num_batched_tokens: Optional[int] = None
max_num_partial_prefills: Optional[int] = 1
max_long_partial_prefills: Optional[int] = 1
long_prefill_token_threshold: Optional[int] = 0
max_num_seqs: Optional[int] = None
max_logprobs: int = 20 # Default value for OpenAI Chat Completions API
disable_log_stats: bool = False
revision: Optional[str] = None
code_revision: Optional[str] = None
rope_scaling: Optional[Dict[str, Any]] = None
rope_theta: Optional[float] = None
hf_token: Optional[Union[bool, str]] = None
hf_overrides: Optional[HfOverrides] = None
tokenizer_revision: Optional[str] = None
quantization: Optional[str] = None
enforce_eager: Optional[bool] = None
max_seq_len_to_capture: int = 8192
disable_custom_all_reduce: bool = ParallelConfig.disable_custom_all_reduce
tokenizer_pool_size: int = 0
# Note: Specifying a tokenizer pool by passing a class
# is intended for expert use only. The API may change without
# notice.
tokenizer_pool_type: Union[str, Type["BaseTokenizerGroup"]] = "ray"
tokenizer_pool_extra_config: Optional[Dict[str, Any]] = None
limit_mm_per_prompt: Optional[Mapping[str, int]] = None
mm_processor_kwargs: Optional[Dict[str, Any]] = None
disable_mm_preprocessor_cache: bool = False
enable_lora: bool = False
enable_lora_bias: bool = False
max_loras: int = 1
max_lora_rank: int = 16
enable_prompt_adapter: bool = False
max_prompt_adapters: int = 1
max_prompt_adapter_token: int = 0
fully_sharded_loras: bool = False
lora_extra_vocab_size: int = 256
long_lora_scaling_factors: Optional[Tuple[float]] = None
lora_dtype: Optional[Union[str, torch.dtype]] = 'auto'
max_cpu_loras: Optional[int] = None
device: str = 'auto'
num_scheduler_steps: int = 1
multi_step_stream_outputs: bool = True
ray_workers_use_nsight: bool = ParallelConfig.ray_workers_use_nsight
num_gpu_blocks_override: Optional[int] = None
num_lookahead_slots: int = 0
model_loader_extra_config: Optional[
dict] = LoadConfig.model_loader_extra_config
ignore_patterns: Optional[Union[str,
List[str]]] = LoadConfig.ignore_patterns
preemption_mode: Optional[str] = None
scheduler_delay_factor: float = 0.0
enable_chunked_prefill: Optional[bool] = None
disable_chunked_mm_input: bool = False
guided_decoding_backend: str = DecodingConfig.guided_decoding_backend
logits_processor_pattern: Optional[str] = None
speculative_config: Optional[Dict[str, Any]] = None
qlora_adapter_name_or_path: Optional[str] = None
show_hidden_metrics_for_version: Optional[str] = None
otlp_traces_endpoint: Optional[str] = None
collect_detailed_traces: Optional[str] = None
disable_async_output_proc: bool = False
scheduling_policy: Literal["fcfs", "priority"] = "fcfs"
scheduler_cls: Union[str, Type[object]] = "vllm.core.scheduler.Scheduler"
override_neuron_config: Optional[Dict[str, Any]] = None
override_pooler_config: Optional[PoolerConfig] = None
compilation_config: Optional[CompilationConfig] = None
worker_cls: str = ParallelConfig.worker_cls
worker_extension_cls: str = ParallelConfig.worker_extension_cls
kv_transfer_config: Optional[KVTransferConfig] = None
generation_config: Optional[str] = "auto"
override_generation_config: Optional[Dict[str, Any]] = None
enable_sleep_mode: bool = False
model_impl: str = "auto"
calculate_kv_scales: Optional[bool] = None
additional_config: Optional[Dict[str, Any]] = None
enable_reasoning: Optional[bool] = None
reasoning_parser: Optional[str] = None
use_tqdm_on_load: bool = LoadConfig.use_tqdm_on_load
def __post_init__(self):
if not self.tokenizer:
self.tokenizer = self.model
# support `EngineArgs(compilation_config={...})`
# without having to manually construct a
# CompilationConfig object
if isinstance(self.compilation_config, (int, dict)):
self.compilation_config = CompilationConfig.from_cli(
str(self.compilation_config))
# Setup plugins
from vllm.plugins import load_general_plugins
load_general_plugins()
@staticmethod
def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
"""Shared CLI arguments for vLLM engine."""
def is_type_in_union(cls: type[Any], type: type[Any]) -> bool:
"""Check if the class is a type in a union type."""
return get_origin(cls) is Union and type in get_args(cls)
def is_optional(cls: type[Any]) -> bool:
"""Check if the class is an optional type."""
return is_type_in_union(cls, type(None))
def get_kwargs(cls: type[Any]) -> Dict[str, Any]:
cls_docs = get_attr_docs(cls)
kwargs = {}
for field in fields(cls):
name = field.name
# One of these will always be present
default = (field.default_factory
if field.default is MISSING else field.default)
kwargs[name] = {"default": default, "help": cls_docs[name]}
# When using action="store_true"
# add_argument doesn't accept type
if field.type is bool:
continue
# Handle optional fields
if is_optional(field.type):
kwargs[name]["type"] = nullable_str
continue
# Handle str in union fields
if is_type_in_union(field.type, str):
kwargs[name]["type"] = str
continue
kwargs[name]["type"] = field.type
return kwargs
# Model arguments
parser.add_argument(
'--model',
type=str,
default=EngineArgs.model,
help='Name or path of the huggingface model to use.')
parser.add_argument(
'--task',
default=EngineArgs.task,
choices=get_args(TaskOption),
help='The task to use the model for. Each vLLM instance only '
'supports one task, even if the same model can be used for '
'multiple tasks. When the model only supports one task, ``"auto"`` '
'can be used to select it; otherwise, you must specify explicitly '
'which task to use.')
parser.add_argument(
'--tokenizer',
type=nullable_str,
default=EngineArgs.tokenizer,
help='Name or path of the huggingface tokenizer to use. '
'If unspecified, model name or path will be used.')
parser.add_argument(
"--hf-config-path",
type=nullable_str,
default=EngineArgs.hf_config_path,
help='Name or path of the huggingface config to use. '
'If unspecified, model name or path will be used.')
parser.add_argument(
'--skip-tokenizer-init',
action='store_true',
help='Skip initialization of tokenizer and detokenizer. '
'Expects valid prompt_token_ids and None for prompt from '
'the input. The generated output will contain token ids.')
parser.add_argument(
'--revision',
type=nullable_str,
default=None,
help='The specific model version to use. It can be a branch '
'name, a tag name, or a commit id. If unspecified, will use '
'the default version.')
parser.add_argument(
'--code-revision',
type=nullable_str,
default=None,
help='The specific revision to use for the model code on '
'Hugging Face Hub. It can be a branch name, a tag name, or a '
'commit id. If unspecified, will use the default version.')
parser.add_argument(
'--tokenizer-revision',
type=nullable_str,
default=None,
help='Revision of the huggingface tokenizer to use. '
'It can be a branch name, a tag name, or a commit id. '
'If unspecified, will use the default version.')
parser.add_argument(
'--tokenizer-mode',
type=str,
default=EngineArgs.tokenizer_mode,
choices=['auto', 'slow', 'mistral', 'custom'],
help='The tokenizer mode.\n\n* "auto" will use the '
'fast tokenizer if available.\n* "slow" will '
'always use the slow tokenizer. \n* '
'"mistral" will always use the `mistral_common` tokenizer. \n* '
'"custom" will use --tokenizer to select the '
'preregistered tokenizer.')
parser.add_argument('--trust-remote-code',
action='store_true',
help='Trust remote code from huggingface.')
parser.add_argument(
'--allowed-local-media-path',
type=str,
help="Allowing API requests to read local images or videos "
"from directories specified by the server file system. "
"This is a security risk. "
"Should only be enabled in trusted environments.")
# Model loading arguments
load_kwargs = get_kwargs(LoadConfig)
load_group = parser.add_argument_group(
title="LoadConfig",
description=LoadConfig.__doc__,
)
load_group.add_argument('--load-format',
choices=[f.value for f in LoadFormat],
**load_kwargs["load_format"])
load_group.add_argument('--download-dir',
**load_kwargs["download_dir"])
load_group.add_argument('--model-loader-extra-config',
**load_kwargs["model_loader_extra_config"])
load_group.add_argument('--use-tqdm-on-load',
action=argparse.BooleanOptionalAction,
**load_kwargs["use_tqdm_on_load"])
parser.add_argument(
'--config-format',
default=EngineArgs.config_format,
choices=[f.value for f in ConfigFormat],
help='The format of the model config to load.\n\n'
'* "auto" will try to load the config in hf format '
'if available else it will try to load in mistral format ')
parser.add_argument(
'--dtype',
type=str,
default=EngineArgs.dtype,
choices=[
'auto', 'half', 'float16', 'bfloat16', 'float', 'float32'
],
help='Data type for model weights and activations.\n\n'
'* "auto" will use FP16 precision for FP32 and FP16 models, and '
'BF16 precision for BF16 models.\n'
'* "half" for FP16. Recommended for AWQ quantization.\n'
'* "float16" is the same as "half".\n'
'* "bfloat16" for a balance between precision and range.\n'
'* "float" is shorthand for FP32 precision.\n'
'* "float32" for FP32 precision.')
parser.add_argument(
'--kv-cache-dtype',
type=str,
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
default=EngineArgs.kv_cache_dtype,
help='Data type for kv cache storage. If "auto", will use model '
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)')
parser.add_argument('--max-model-len',
type=human_readable_int,
default=EngineArgs.max_model_len,
help='Model context length. If unspecified, will '
'be automatically derived from the model config. '
'Supports k/m/g/K/M/G in human-readable format.\n'
'Examples:\n'
'- 1k → 1000\n'
'- 1K → 1024\n')
parser.add_argument(
'--guided-decoding-backend',
type=str,
default=DecodingConfig.guided_decoding_backend,
help='Which engine will be used for guided decoding'
' (JSON schema / regex etc) by default. Currently support '
'https://github.com/mlc-ai/xgrammar and '
'https://github.com/guidance-ai/llguidance.'
'Valid backend values are "xgrammar", "guidance", and "auto". '
'With "auto", we will make opinionated choices based on request '
'contents and what the backend libraries currently support, so '
'the behavior is subject to change in each release.')
parser.add_argument(
'--logits-processor-pattern',
type=nullable_str,
default=None,
help='Optional regex pattern specifying valid logits processor '
'qualified names that can be passed with the `logits_processors` '
'extra completion argument. Defaults to None, which allows no '
'processors.')
parser.add_argument(
'--model-impl',
type=str,
default=EngineArgs.model_impl,
choices=[f.value for f in ModelImpl],
help='Which implementation of the model to use.\n\n'
'* "auto" will try to use the vLLM implementation if it exists '
'and fall back to the Transformers implementation if no vLLM '
'implementation is available.\n'
'* "vllm" will use the vLLM model implementation.\n'
'* "transformers" will use the Transformers model '
'implementation.\n')
# Parallel arguments
parallel_kwargs = get_kwargs(ParallelConfig)
parallel_group = parser.add_argument_group(
title="ParallelConfig",
description=ParallelConfig.__doc__,
)
parallel_group.add_argument(
'--distributed-executor-backend',
choices=['ray', 'mp', 'uni', 'external_launcher'],
**parallel_kwargs["distributed_executor_backend"])
parallel_group.add_argument(
'--pipeline-parallel-size', '-pp',
**parallel_kwargs["pipeline_parallel_size"])
parallel_group.add_argument('--tensor-parallel-size', '-tp',
**parallel_kwargs["tensor_parallel_size"])
parallel_group.add_argument('--data-parallel-size', '-dp',
**parallel_kwargs["data_parallel_size"])
parallel_group.add_argument(
'--enable-expert-parallel',
action='store_true',
**parallel_kwargs["enable_expert_parallel"])
parallel_group.add_argument(
'--max-parallel-loading-workers',
**parallel_kwargs["max_parallel_loading_workers"])
parallel_group.add_argument(
'--ray-workers-use-nsight',
action='store_true',
**parallel_kwargs["ray_workers_use_nsight"])
parallel_group.add_argument(
'--disable-custom-all-reduce',
action='store_true',
**parallel_kwargs["disable_custom_all_reduce"])
# KV cache arguments
parser.add_argument('--block-size',
type=int,
default=EngineArgs.block_size,
choices=[8, 16, 32, 64, 128],
help='Token block size for contiguous chunks of '
'tokens. This is ignored on neuron devices and '
'set to ``--max-model-len``. On CUDA devices, '
'only block sizes up to 32 are supported. '
'On HPU devices, block size defaults to 128.')
parser.add_argument(
"--enable-prefix-caching",
action=argparse.BooleanOptionalAction,
default=EngineArgs.enable_prefix_caching,
help="Enables automatic prefix caching. "
"Use ``--no-enable-prefix-caching`` to disable explicitly.",
)
parser.add_argument(
"--prefix-caching-hash-algo",
type=str,
choices=["builtin", "sha256"],
default=EngineArgs.prefix_caching_hash_algo,
help="Set the hash algorithm for prefix caching. "
"Options are 'builtin' (Python's built-in hash) or 'sha256' "
"(collision resistant but with certain overheads).",
)
parser.add_argument('--disable-sliding-window',
action='store_true',
help='Disables sliding window, '
'capping to sliding window size.')
parser.add_argument('--use-v2-block-manager',
action='store_true',
default=True,
help='[DEPRECATED] block manager v1 has been '
'removed and SelfAttnBlockSpaceManager (i.e. '
'block manager v2) is now the default. '
'Setting this flag to True or False'
' has no effect on vLLM behavior.')
parser.add_argument(
'--num-lookahead-slots',
type=int,
default=EngineArgs.num_lookahead_slots,
help='Experimental scheduling config necessary for '
'speculative decoding. This will be replaced by '
'speculative config in the future; it is present '
'to enable correctness tests until then.')
parser.add_argument('--seed',
type=int,
default=EngineArgs.seed,
help='Random seed for operations.')
parser.add_argument('--swap-space',
type=float,
default=EngineArgs.swap_space,
help='CPU swap space size (GiB) per GPU.')
parser.add_argument(
'--cpu-offload-gb',
type=float,
default=0,
help='The space in GiB to offload to CPU, per GPU. '
'Default is 0, which means no offloading. Intuitively, '
'this argument can be seen as a virtual way to increase '
'the GPU memory size. For example, if you have one 24 GB '
'GPU and set this to 10, virtually you can think of it as '
'a 34 GB GPU. Then you can load a 13B model with BF16 weight, '
'which requires at least 26GB GPU memory. Note that this '
'requires fast CPU-GPU interconnect, as part of the model is '
'loaded from CPU memory to GPU memory on the fly in each '
'model forward pass.')
parser.add_argument(
'--gpu-memory-utilization',
type=float,
default=EngineArgs.gpu_memory_utilization,
help='The fraction of GPU memory to be used for the model '
'executor, which can range from 0 to 1. For example, a value of '
'0.5 would imply 50%% GPU memory utilization. If unspecified, '
'will use the default value of 0.9. This is a per-instance '
'limit, and only applies to the current vLLM instance.'
'It does not matter if you have another vLLM instance running '
'on the same GPU. For example, if you have two vLLM instances '
'running on the same GPU, you can set the GPU memory utilization '
'to 0.5 for each instance.')
parser.add_argument(
'--num-gpu-blocks-override',
type=int,
default=None,
help='If specified, ignore GPU profiling result and use this number'
' of GPU blocks. Used for testing preemption.')
parser.add_argument('--max-num-batched-tokens',
type=int,
default=EngineArgs.max_num_batched_tokens,
help='Maximum number of batched tokens per '
'iteration.')
parser.add_argument(
"--max-num-partial-prefills",
type=int,
default=EngineArgs.max_num_partial_prefills,
help="For chunked prefill, the max number of concurrent \
partial prefills.")
parser.add_argument(
"--max-long-partial-prefills",
type=int,
default=EngineArgs.max_long_partial_prefills,
help="For chunked prefill, the maximum number of prompts longer "
"than --long-prefill-token-threshold that will be prefilled "
"concurrently. Setting this less than --max-num-partial-prefills "
"will allow shorter prompts to jump the queue in front of longer "
"prompts in some cases, improving latency.")
parser.add_argument(
"--long-prefill-token-threshold",
type=float,
default=EngineArgs.long_prefill_token_threshold,
help="For chunked prefill, a request is considered long if the "
"prompt is longer than this number of tokens.")
parser.add_argument('--max-num-seqs',
type=int,
default=EngineArgs.max_num_seqs,
help='Maximum number of sequences per iteration.')
parser.add_argument(
'--max-logprobs',
type=int,
default=EngineArgs.max_logprobs,
help=('Max number of log probs to return logprobs is specified in'
' SamplingParams.'))
parser.add_argument('--disable-log-stats',
action='store_true',
help='Disable logging statistics.')
# Quantization settings.
parser.add_argument('--quantization',
'-q',
type=nullable_str,
choices=[*QUANTIZATION_METHODS, None],
default=EngineArgs.quantization,
help='Method used to quantize the weights. If '
'None, we first check the `quantization_config` '
'attribute in the model config file. If that is '
'None, we assume the model weights are not '
'quantized and use `dtype` to determine the data '
'type of the weights.')
parser.add_argument(
'--rope-scaling',
default=None,
type=json.loads,
help='RoPE scaling configuration in JSON format. '
'For example, ``{"rope_type":"dynamic","factor":2.0}``')
parser.add_argument('--rope-theta',
default=None,
type=float,
help='RoPE theta. Use with `rope_scaling`. In '
'some cases, changing the RoPE theta improves the '
'performance of the scaled model.')
parser.add_argument(
'--hf-token',
type=str,
nargs='?',
const=True,
default=None,
help='The token to use as HTTP bearer authorization'
' for remote files. If `True`, will use the token '
'generated when running `huggingface-cli login` '
'(stored in `~/.huggingface`).')
parser.add_argument('--hf-overrides',
type=json.loads,
default=EngineArgs.hf_overrides,
help='Extra arguments for the HuggingFace config. '
'This should be a JSON string that will be '
'parsed into a dictionary.')
parser.add_argument('--enforce-eager',
action='store_true',
help='Always use eager-mode PyTorch. If False, '
'will use eager mode and CUDA graph in hybrid '
'for maximal performance and flexibility.')
parser.add_argument('--max-seq-len-to-capture',
type=int,
default=EngineArgs.max_seq_len_to_capture,
help='Maximum sequence length covered by CUDA '
'graphs. When a sequence has context length '
'larger than this, we fall back to eager mode. '
'Additionally for encoder-decoder models, if the '
'sequence length of the encoder input is larger '
'than this, we fall back to the eager mode.')
parser.add_argument('--tokenizer-pool-size',
type=int,
default=EngineArgs.tokenizer_pool_size,
help='Size of tokenizer pool to use for '
'asynchronous tokenization. If 0, will '
'use synchronous tokenization.')
parser.add_argument('--tokenizer-pool-type',
type=str,
default=EngineArgs.tokenizer_pool_type,
help='Type of tokenizer pool to use for '
'asynchronous tokenization. Ignored '
'if tokenizer_pool_size is 0.')
parser.add_argument('--tokenizer-pool-extra-config',
type=nullable_str,
default=EngineArgs.tokenizer_pool_extra_config,
help='Extra config for tokenizer pool. '
'This should be a JSON string that will be '
'parsed into a dictionary. Ignored if '
'tokenizer_pool_size is 0.')
# Multimodal related configs
parser.add_argument(
'--limit-mm-per-prompt',
type=nullable_kvs,
default=EngineArgs.limit_mm_per_prompt,
# The default value is given in
# MultiModalConfig.get_default_limit_per_prompt
help=('For each multimodal plugin, limit how many '
'input instances to allow for each prompt. '
'Expects a comma-separated list of items, '
'e.g.: `image=16,video=2` allows a maximum of 16 '
'images and 2 videos per prompt. Defaults to '
'1 (V0) or 999 (V1) for each modality.'))
parser.add_argument(
'--mm-processor-kwargs',
default=None,
type=json.loads,
help=('Overrides for the multimodal input mapping/processing, '
'e.g., image processor. For example: ``{"num_crops": 4}``.'))
parser.add_argument(
'--disable-mm-preprocessor-cache',
action='store_true',
help='If true, then disables caching of the multi-modal '
'preprocessor/mapper. (not recommended)')
# LoRA related configs
parser.add_argument('--enable-lora',
action='store_true',
help='If True, enable handling of LoRA adapters.')
parser.add_argument('--enable-lora-bias',
action='store_true',
help='If True, enable bias for LoRA adapters.')
parser.add_argument('--max-loras',
type=int,
default=EngineArgs.max_loras,
help='Max number of LoRAs in a single batch.')
parser.add_argument('--max-lora-rank',
type=int,
default=EngineArgs.max_lora_rank,
help='Max LoRA rank.')
parser.add_argument(
'--lora-extra-vocab-size',
type=int,
default=EngineArgs.lora_extra_vocab_size,
help=('Maximum size of extra vocabulary that can be '
'present in a LoRA adapter (added to the base '
'model vocabulary).'))
parser.add_argument(
'--lora-dtype',
type=str,
default=EngineArgs.lora_dtype,
choices=['auto', 'float16', 'bfloat16'],
help=('Data type for LoRA. If auto, will default to '
'base model dtype.'))
parser.add_argument(
'--long-lora-scaling-factors',
type=nullable_str,
default=EngineArgs.long_lora_scaling_factors,
help=('Specify multiple scaling factors (which can '
'be different from base model scaling factor '
'- see eg. Long LoRA) to allow for multiple '
'LoRA adapters trained with those scaling '
'factors to be used at the same time. If not '
'specified, only adapters trained with the '
'base model scaling factor are allowed.'))
parser.add_argument(
'--max-cpu-loras',
type=int,
default=EngineArgs.max_cpu_loras,
help=('Maximum number of LoRAs to store in CPU memory. '
'Must be >= than max_loras.'))
parser.add_argument(
'--fully-sharded-loras',
action='store_true',
help=('By default, only half of the LoRA computation is '
'sharded with tensor parallelism. '
'Enabling this will use the fully sharded layers. '
'At high sequence length, max rank or '
'tensor parallel size, this is likely faster.'))
parser.add_argument('--enable-prompt-adapter',
action='store_true',
help='If True, enable handling of PromptAdapters.')
parser.add_argument('--max-prompt-adapters',
type=int,
default=EngineArgs.max_prompt_adapters,
help='Max number of PromptAdapters in a batch.')
parser.add_argument('--max-prompt-adapter-token',
type=int,
default=EngineArgs.max_prompt_adapter_token,
help='Max number of PromptAdapters tokens')
parser.add_argument("--device",
type=str,
default=EngineArgs.device,
choices=DEVICE_OPTIONS,
help='Device type for vLLM execution.')
parser.add_argument('--num-scheduler-steps',
type=int,
default=1,
help=('Maximum number of forward steps per '
'scheduler call.'))
parser.add_argument(
'--multi-step-stream-outputs',
action=StoreBoolean,
default=EngineArgs.multi_step_stream_outputs,
nargs="?",
const="True",
help='If False, then multi-step will stream outputs at the end '
'of all steps')
parser.add_argument(
'--scheduler-delay-factor',
type=float,
default=EngineArgs.scheduler_delay_factor,
help='Apply a delay (of delay factor multiplied by previous '
'prompt latency) before scheduling next prompt.')
parser.add_argument(
'--enable-chunked-prefill',
action=StoreBoolean,
default=EngineArgs.enable_chunked_prefill,
nargs="?",
const="True",
help='If set, the prefill requests can be chunked based on the '
'max_num_batched_tokens.')
parser.add_argument('--speculative-config',
type=json.loads,
default=None,
help='The configurations for speculative decoding.'
' Should be a JSON string.')
parser.add_argument(
'--ignore-patterns',
action="append",
type=str,
default=[],
help="The pattern(s) to ignore when loading the model."
"Default to `original/**/*` to avoid repeated loading of llama's "
"checkpoints.")
parser.add_argument(
'--preemption-mode',
type=str,
default=None,
help='If \'recompute\', the engine performs preemption by '
'recomputing; If \'swap\', the engine performs preemption by '
'block swapping.')
parser.add_argument(
"--served-model-name",
nargs="+",
type=str,
default=None,
help="The model name(s) used in the API. If multiple "
"names are provided, the server will respond to any "
"of the provided names. The model name in the model "
"field of a response will be the first name in this "
"list. If not specified, the model name will be the "
"same as the ``--model`` argument. Noted that this name(s) "
"will also be used in `model_name` tag content of "
"prometheus metrics, if multiple names provided, metrics "
"tag will take the first one.")
parser.add_argument('--qlora-adapter-name-or-path',
type=str,
default=None,
help='Name or path of the QLoRA adapter.')
parser.add_argument('--show-hidden-metrics-for-version',
type=str,
default=None,
help='Enable deprecated Prometheus metrics that '
'have been hidden since the specified version. '
'For example, if a previously deprecated metric '
'has been hidden since the v0.7.0 release, you '
'use --show-hidden-metrics-for-version=0.7 as a '
'temporary escape hatch while you migrate to new '
'metrics. The metric is likely to be removed '
'completely in an upcoming release.')
parser.add_argument(
'--otlp-traces-endpoint',
type=str,
default=None,
help='Target URL to which OpenTelemetry traces will be sent.')
parser.add_argument(
'--collect-detailed-traces',
type=str,
default=None,
help="Valid choices are " +
",".join(ALLOWED_DETAILED_TRACE_MODULES) +
". It makes sense to set this only if ``--otlp-traces-endpoint`` is"
" set. If set, it will collect detailed traces for the specified "
"modules. This involves use of possibly costly and or blocking "
"operations and hence might have a performance impact.")
parser.add_argument(
'--disable-async-output-proc',
action='store_true',
default=EngineArgs.disable_async_output_proc,
help="Disable async output processing. This may result in "
"lower performance.")
parser.add_argument(
'--scheduling-policy',
choices=['fcfs', 'priority'],
default="fcfs",
help='The scheduling policy to use. "fcfs" (first come first served'
', i.e. requests are handled in order of arrival; default) '
'or "priority" (requests are handled based on given '
'priority (lower value means earlier handling) and time of '
'arrival deciding any ties).')
parser.add_argument(
'--scheduler-cls',
default=EngineArgs.scheduler_cls,
help='The scheduler class to use. "vllm.core.scheduler.Scheduler" '
'is the default scheduler. Can be a class directly or the path to '
'a class of form "mod.custom_class".')
parser.add_argument(
'--override-neuron-config',
type=json.loads,
default=None,
help="Override or set neuron device configuration. "
"e.g. ``{\"cast_logits_dtype\": \"bloat16\"}``.")
parser.add_argument(
'--override-pooler-config',
type=PoolerConfig.from_json,
default=None,
help="Override or set the pooling method for pooling models. "
"e.g. ``{\"pooling_type\": \"mean\", \"normalize\": false}``.")
parser.add_argument('--compilation-config',
'-O',
type=CompilationConfig.from_cli,
default=None,
help='torch.compile configuration for the model.'
'When it is a number (0, 1, 2, 3), it will be '
'interpreted as the optimization level.\n'
'NOTE: level 0 is the default level without '
'any optimization. level 1 and 2 are for internal '
'testing only. level 3 is the recommended level '
'for production.\n'
'To specify the full compilation config, '
'use a JSON string.\n'
'Following the convention of traditional '
'compilers, using -O without space is also '
'supported. -O3 is equivalent to -O 3.')
parser.add_argument('--kv-transfer-config',
type=KVTransferConfig.from_cli,
default=None,
help='The configurations for distributed KV cache '
'transfer. Should be a JSON string.')
parser.add_argument(
'--worker-cls',
type=str,
default="auto",
help='The worker class to use for distributed execution.')
parser.add_argument(
'--worker-extension-cls',
type=str,
default="",
help='The worker extension class on top of the worker cls, '
'it is useful if you just want to add new functions to the worker '
'class without changing the existing functions.')
parser.add_argument(
"--generation-config",
type=nullable_str,
default="auto",
help="The folder path to the generation config. "
"Defaults to 'auto', the generation config will be loaded from "
"model path. If set to 'vllm', no generation config is loaded, "
"vLLM defaults will be used. If set to a folder path, the "
"generation config will be loaded from the specified folder path. "
"If `max_new_tokens` is specified in generation config, then "
"it sets a server-wide limit on the number of output tokens "
"for all requests.")
parser.add_argument(
"--override-generation-config",
type=json.loads,
default=None,
help="Overrides or sets generation config in JSON format. "
"e.g. ``{\"temperature\": 0.5}``. If used with "
"--generation-config=auto, the override parameters will be merged "
"with the default config from the model. If generation-config is "
"None, only the override parameters are used.")
parser.add_argument("--enable-sleep-mode",
action="store_true",
default=False,
help="Enable sleep mode for the engine. "
"(only cuda platform is supported)")
parser.add_argument(
'--calculate-kv-scales',
action='store_true',
help='This enables dynamic calculation of '
'k_scale and v_scale when kv-cache-dtype is fp8. '
'If calculate-kv-scales is false, the scales will '
'be loaded from the model checkpoint if available. '
'Otherwise, the scales will default to 1.0.')
parser.add_argument(
"--additional-config",
type=json.loads,
default=None,
help="Additional config for specified platform in JSON format. "
"Different platforms may support different configs. Make sure the "
"configs are valid for the platform you are using. The input format"
" is like '{\"config_key\":\"config_value\"}'")
parser.add_argument(
"--enable-reasoning",
action="store_true",
default=False,
help="Whether to enable reasoning_content for the model. "
"If enabled, the model will be able to generate reasoning content."
)
parser.add_argument(
"--reasoning-parser",
type=str,
choices=list(ReasoningParserManager.reasoning_parsers),
default=None,
help=
"Select the reasoning parser depending on the model that you're "
"using. This is used to parse the reasoning content into OpenAI "
"API format. Required for ``--enable-reasoning``.")
parser.add_argument(
"--disable-cascade-attn",
action="store_true",
default=False,
help="Disable cascade attention for V1. While cascade attention "
"does not change the mathematical correctness, disabling it "
"could be useful for preventing potential numerical issues. "
"Note that even if this is set to False, cascade attention will be "
"only used when the heuristic tells that it's beneficial.")
parser.add_argument(
"--disable-chunked-mm-input",
action=StoreBoolean,
default=EngineArgs.disable_chunked_mm_input,
nargs="?",
const="True",
help="Disable multimodal input chunking attention for V1. "
"If set to true and chunked prefill is enabled, we do not want to"
" partially schedule a multimodal item. This ensures that if a "
"request has a mixed prompt (like text tokens TTTT followed by "
"image tokens IIIIIIIIII) where only some image tokens can be "
"scheduled (like TTTTIIIII, leaving IIIII), it will be scheduled "
"as TTTT in one step and IIIIIIIIII in the next.")
return parser
@classmethod
def from_cli_args(cls, args: argparse.Namespace):
# Get the list of attributes of this dataclass.
attrs = [attr.name for attr in dataclasses.fields(cls)]
# Set the attributes from the parsed arguments.
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
return engine_args
def create_model_config(self) -> ModelConfig:
# gguf file needs a specific model loader and doesn't use hf_repo
if check_gguf_file(self.model):
self.quantization = self.load_format = "gguf"
# NOTE: This is to allow model loading from S3 in CI
if (not isinstance(self, AsyncEngineArgs) and envs.VLLM_CI_USE_S3
and self.model in MODELS_ON_S3
and self.load_format == LoadFormat.AUTO): # noqa: E501
self.model = f"{MODEL_WEIGHTS_S3_BUCKET}/{self.model}"
self.load_format = LoadFormat.RUNAI_STREAMER
return ModelConfig(
model=self.model,
hf_config_path=self.hf_config_path,
task=self.task,
# We know this is not None because we set it in __post_init__
tokenizer=cast(str, self.tokenizer),
tokenizer_mode=self.tokenizer_mode,
trust_remote_code=self.trust_remote_code,
allowed_local_media_path=self.allowed_local_media_path,
dtype=self.dtype,
seed=self.seed,
revision=self.revision,
code_revision=self.code_revision,
rope_scaling=self.rope_scaling,
rope_theta=self.rope_theta,
hf_token=self.hf_token,
hf_overrides=self.hf_overrides,
tokenizer_revision=self.tokenizer_revision,
max_model_len=self.max_model_len,
quantization=self.quantization,
enforce_eager=self.enforce_eager,
max_seq_len_to_capture=self.max_seq_len_to_capture,
max_logprobs=self.max_logprobs,
disable_sliding_window=self.disable_sliding_window,
disable_cascade_attn=self.disable_cascade_attn,
skip_tokenizer_init=self.skip_tokenizer_init,
served_model_name=self.served_model_name,
limit_mm_per_prompt=self.limit_mm_per_prompt,
use_async_output_proc=not self.disable_async_output_proc,
config_format=self.config_format,
mm_processor_kwargs=self.mm_processor_kwargs,
disable_mm_preprocessor_cache=self.disable_mm_preprocessor_cache,
override_neuron_config=self.override_neuron_config,
override_pooler_config=self.override_pooler_config,
logits_processor_pattern=self.logits_processor_pattern,
generation_config=self.generation_config,
override_generation_config=self.override_generation_config,
enable_sleep_mode=self.enable_sleep_mode,
model_impl=self.model_impl,
)
def create_load_config(self) -> LoadConfig:
if(self.qlora_adapter_name_or_path is not None) and \
self.quantization != "bitsandbytes":
raise ValueError(
"QLoRA adapter only support "
f"'bitsandbytes' quantization, but got {self.quantization}")
if self.quantization == "bitsandbytes":
self.load_format = "bitsandbytes"
return LoadConfig(
load_format=self.load_format,
download_dir=self.download_dir,
model_loader_extra_config=self.model_loader_extra_config,
ignore_patterns=self.ignore_patterns,
use_tqdm_on_load=self.use_tqdm_on_load,
)
def create_speculative_config(
self,
target_model_config: ModelConfig,
target_parallel_config: ParallelConfig,
enable_chunked_prefill: bool,
disable_log_stats: bool,
) -> Optional["SpeculativeConfig"]:
"""Initializes and returns a SpeculativeConfig object based on
`speculative_config`.
This function utilizes `speculative_config` to create a
SpeculativeConfig object. The `speculative_config` can either be
provided as a JSON string input via CLI arguments or directly as a
dictionary from the engine.
"""
if self.speculative_config is None:
return None
# Note(Shangming): These parameters are not obtained from the cli arg
# '--speculative-config' and must be passed in when creating the engine
# config.
self.speculative_config.update({
"target_model_config": target_model_config,
"target_parallel_config": target_parallel_config,
"enable_chunked_prefill": enable_chunked_prefill,
"disable_log_stats": disable_log_stats,
})
speculative_config = SpeculativeConfig.from_dict(
self.speculative_config)
return speculative_config
def create_engine_config(
self,
usage_context: Optional[UsageContext] = None,
) -> VllmConfig:
"""
Create the VllmConfig.
NOTE: for autoselection of V0 vs V1 engine, we need to
create the ModelConfig first, since ModelConfig's attrs
(e.g. the model arch) are needed to make the decision.
This function set VLLM_USE_V1=X if VLLM_USE_V1 is
unspecified by the user.
If VLLM_USE_V1 is specified by the user but the VllmConfig
is incompatible, we raise an error.
"""
from vllm.platforms import current_platform
current_platform.pre_register_and_update()
device_config = DeviceConfig(device=self.device)
model_config = self.create_model_config()
# * If VLLM_USE_V1 is unset, we enable V1 for "supported features"
# and fall back to V0 for experimental or unsupported features.
# * If VLLM_USE_V1=1, we enable V1 for supported + experimental
# features and raise error for unsupported features.
# * If VLLM_USE_V1=0, we disable V1.
use_v1 = False
try_v1 = envs.VLLM_USE_V1 or not envs.is_set("VLLM_USE_V1")
if try_v1 and self._is_v1_supported_oracle(model_config):
use_v1 = True
# If user explicitly set VLLM_USE_V1, sanity check we respect it.
if envs.is_set("VLLM_USE_V1"):
assert use_v1 == envs.VLLM_USE_V1
# Otherwise, set the VLLM_USE_V1 variable globally.
else:
envs.set_vllm_use_v1(use_v1)
# Set default arguments for V0 or V1 Engine.
if use_v1:
self._set_default_args_v1(usage_context)
else:
self._set_default_args_v0(model_config)
assert self.enable_chunked_prefill is not None
cache_config = CacheConfig(
block_size=self.block_size,
gpu_memory_utilization=self.gpu_memory_utilization,
swap_space=self.swap_space,
cache_dtype=self.kv_cache_dtype,
is_attention_free=model_config.is_attention_free,
num_gpu_blocks_override=self.num_gpu_blocks_override,
sliding_window=model_config.get_sliding_window(),
enable_prefix_caching=self.enable_prefix_caching,
prefix_caching_hash_algo=self.prefix_caching_hash_algo,
cpu_offload_gb=self.cpu_offload_gb,
calculate_kv_scales=self.calculate_kv_scales,
)
# Get the current placement group if Ray is initialized and
# we are in a Ray actor. If so, then the placement group will be
# passed to spawned processes.
placement_group = None
if is_in_ray_actor():
import ray
# This call initializes Ray automatically if it is not initialized,
# but we should not do this here.
placement_group = ray.util.get_current_placement_group()
parallel_config = ParallelConfig(
pipeline_parallel_size=self.pipeline_parallel_size,
tensor_parallel_size=self.tensor_parallel_size,
data_parallel_size=self.data_parallel_size,
enable_expert_parallel=self.enable_expert_parallel,
max_parallel_loading_workers=self.max_parallel_loading_workers,
disable_custom_all_reduce=self.disable_custom_all_reduce,
tokenizer_pool_config=TokenizerPoolConfig.create_config(
self.tokenizer_pool_size,
self.tokenizer_pool_type,
self.tokenizer_pool_extra_config,
),
ray_workers_use_nsight=self.ray_workers_use_nsight,
placement_group=placement_group,
distributed_executor_backend=self.distributed_executor_backend,
worker_cls=self.worker_cls,
worker_extension_cls=self.worker_extension_cls,
)
speculative_config = self.create_speculative_config(
target_model_config=model_config,
target_parallel_config=parallel_config,
enable_chunked_prefill=self.enable_chunked_prefill,
disable_log_stats=self.disable_log_stats,
)
# Reminder: Please update docs/source/features/compatibility_matrix.md
# If the feature combo become valid
if self.num_scheduler_steps > 1:
if speculative_config is not None:
raise ValueError("Speculative decoding is not supported with "
"multi-step (--num-scheduler-steps > 1)")
if self.enable_chunked_prefill and self.pipeline_parallel_size > 1:
raise ValueError("Multi-Step Chunked-Prefill is not supported "
"for pipeline-parallel-size > 1")
from vllm.platforms import current_platform
if current_platform.is_cpu():
logger.warning("Multi-Step (--num-scheduler-steps > 1) is "
"currently not supported for CPUs and has been "
"disabled.")
self.num_scheduler_steps = 1
# make sure num_lookahead_slots is set the higher value depending on
# if we are using speculative decoding or multi-step
num_lookahead_slots = max(self.num_lookahead_slots,
self.num_scheduler_steps - 1)
num_lookahead_slots = num_lookahead_slots \
if speculative_config is None \
else speculative_config.num_lookahead_slots
scheduler_config = SchedulerConfig(
runner_type=model_config.runner_type,
max_num_batched_tokens=self.max_num_batched_tokens,
max_num_seqs=self.max_num_seqs,
max_model_len=model_config.max_model_len,
num_lookahead_slots=num_lookahead_slots,
delay_factor=self.scheduler_delay_factor,
enable_chunked_prefill=self.enable_chunked_prefill,
disable_chunked_mm_input=self.disable_chunked_mm_input,
is_multimodal_model=model_config.is_multimodal_model,
preemption_mode=self.preemption_mode,
num_scheduler_steps=self.num_scheduler_steps,
multi_step_stream_outputs=self.multi_step_stream_outputs,
send_delta_data=(envs.VLLM_USE_RAY_SPMD_WORKER
and parallel_config.use_ray),
policy=self.scheduling_policy,
scheduler_cls=self.scheduler_cls,
max_num_partial_prefills=self.max_num_partial_prefills,
max_long_partial_prefills=self.max_long_partial_prefills,
long_prefill_token_threshold=self.long_prefill_token_threshold,
)
lora_config = LoRAConfig(
bias_enabled=self.enable_lora_bias,
max_lora_rank=self.max_lora_rank,
max_loras=self.max_loras,
fully_sharded_loras=self.fully_sharded_loras,
lora_extra_vocab_size=self.lora_extra_vocab_size,
long_lora_scaling_factors=self.long_lora_scaling_factors,
lora_dtype=self.lora_dtype,
max_cpu_loras=self.max_cpu_loras if self.max_cpu_loras
and self.max_cpu_loras > 0 else None) if self.enable_lora else None
if self.qlora_adapter_name_or_path is not None and \
self.qlora_adapter_name_or_path != "":
if self.model_loader_extra_config is None:
self.model_loader_extra_config = {}
self.model_loader_extra_config[
"qlora_adapter_name_or_path"] = self.qlora_adapter_name_or_path
# bitsandbytes pre-quantized model need a specific model loader
if model_config.quantization == "bitsandbytes":
self.quantization = self.load_format = "bitsandbytes"
load_config = self.create_load_config()
prompt_adapter_config = PromptAdapterConfig(
max_prompt_adapters=self.max_prompt_adapters,
max_prompt_adapter_token=self.max_prompt_adapter_token) \
if self.enable_prompt_adapter else None
decoding_config = DecodingConfig(
guided_decoding_backend=self.guided_decoding_backend,
reasoning_backend=self.reasoning_parser
if self.enable_reasoning else None,
)
show_hidden_metrics = False
if self.show_hidden_metrics_for_version is not None:
show_hidden_metrics = version._prev_minor_version_was(
self.show_hidden_metrics_for_version)
detailed_trace_modules = []
if self.collect_detailed_traces is not None:
detailed_trace_modules = self.collect_detailed_traces.split(",")
for m in detailed_trace_modules:
if m not in ALLOWED_DETAILED_TRACE_MODULES:
raise ValueError(
f"Invalid module {m} in collect_detailed_traces. "
f"Valid modules are {ALLOWED_DETAILED_TRACE_MODULES}")
observability_config = ObservabilityConfig(
show_hidden_metrics=show_hidden_metrics,
otlp_traces_endpoint=self.otlp_traces_endpoint,
collect_model_forward_time="model" in detailed_trace_modules
or "all" in detailed_trace_modules,
collect_model_execute_time="worker" in detailed_trace_modules
or "all" in detailed_trace_modules,
)
config = VllmConfig(
model_config=model_config,
cache_config=cache_config,
parallel_config=parallel_config,
scheduler_config=scheduler_config,
device_config=device_config,
lora_config=lora_config,
speculative_config=speculative_config,
load_config=load_config,
decoding_config=decoding_config,
observability_config=observability_config,
prompt_adapter_config=prompt_adapter_config,
compilation_config=self.compilation_config,
kv_transfer_config=self.kv_transfer_config,
additional_config=self.additional_config,
)
return config
def _is_v1_supported_oracle(self, model_config: ModelConfig) -> bool:
"""Oracle for whether to use V0 or V1 Engine by default."""
#############################################################
# Unsupported Feature Flags on V1.
if (self.load_format == LoadFormat.TENSORIZER.value
or self.load_format == LoadFormat.SHARDED_STATE.value):
_raise_or_fallback(
feature_name=f"--load_format {self.load_format}",
recommend_to_remove=False)
return False
if (self.logits_processor_pattern
!= EngineArgs.logits_processor_pattern):
_raise_or_fallback(feature_name="--logits-processor-pattern",
recommend_to_remove=False)
return False
if self.preemption_mode != EngineArgs.preemption_mode:
_raise_or_fallback(feature_name="--preemption-mode",
recommend_to_remove=True)
return False
if (self.disable_async_output_proc
!= EngineArgs.disable_async_output_proc):
_raise_or_fallback(feature_name="--disable-async-output-proc",
recommend_to_remove=True)
return False
if self.scheduling_policy != EngineArgs.scheduling_policy:
_raise_or_fallback(feature_name="--scheduling-policy",
recommend_to_remove=False)
return False
if self.num_scheduler_steps != EngineArgs.num_scheduler_steps:
_raise_or_fallback(feature_name="--num-scheduler-steps",
recommend_to_remove=True)
return False
if self.scheduler_delay_factor != EngineArgs.scheduler_delay_factor:
_raise_or_fallback(feature_name="--scheduler-delay-factor",
recommend_to_remove=True)
return False
if self.additional_config != EngineArgs.additional_config:
_raise_or_fallback(feature_name="--additional-config",
recommend_to_remove=False)
return False
# Xgrammar and Guidance are supported.
SUPPORTED_GUIDED_DECODING = [
"xgrammar", "xgrammar:disable-any-whitespace", "guidance",
"guidance:disable-any-whitespace", "auto"
]
if self.guided_decoding_backend not in SUPPORTED_GUIDED_DECODING:
_raise_or_fallback(feature_name="--guided-decoding-backend",
recommend_to_remove=False)
return False
# Need at least Ampere for now (FA support required).
# Skip this check if we are running on a non-GPU platform,
# or if the device capability is not available
# (e.g. in a Ray actor without GPUs).
from vllm.platforms import current_platform
if (current_platform.is_cuda()
and current_platform.get_device_capability()
and current_platform.get_device_capability().major < 8):
_raise_or_fallback(feature_name="Compute Capability < 8.0",
recommend_to_remove=False)
return False
# No Fp8 KV cache so far.
if self.kv_cache_dtype != "auto":
fp8_attention = self.kv_cache_dtype.startswith("fp8")
will_use_fa = (
current_platform.is_cuda()
and not envs.is_set("VLLM_ATTENTION_BACKEND")
) or envs.VLLM_ATTENTION_BACKEND == "FLASH_ATTN_VLLM_V1"
supported = False
if fp8_attention and will_use_fa:
from vllm.vllm_flash_attn.fa_utils import (
flash_attn_supports_fp8)
supported = flash_attn_supports_fp8()
if not supported:
_raise_or_fallback(feature_name="--kv-cache-dtype",
recommend_to_remove=False)
return False
# No Prompt Adapter so far.
if self.enable_prompt_adapter:
_raise_or_fallback(feature_name="--enable-prompt-adapter",
recommend_to_remove=False)
return False
# Only Fp16 and Bf16 dtypes since we only support FA.
V1_SUPPORTED_DTYPES = [torch.bfloat16, torch.float16]
if model_config.dtype not in V1_SUPPORTED_DTYPES:
_raise_or_fallback(feature_name=f"--dtype {model_config.dtype}",
recommend_to_remove=False)
return False
# Some quantization is not compatible with torch.compile.
V1_UNSUPPORTED_QUANT = ["gguf"]
if model_config.quantization in V1_UNSUPPORTED_QUANT:
_raise_or_fallback(
feature_name=f"--quantization {model_config.quantization}",
recommend_to_remove=False)
return False
# No Embedding Models so far.
if model_config.task not in ["generate"]:
_raise_or_fallback(feature_name=f"--task {model_config.task}",
recommend_to_remove=False)
return False
# No Mamba or Encoder-Decoder so far.
if not model_config.is_v1_compatible:
_raise_or_fallback(feature_name=model_config.architectures,
recommend_to_remove=False)
return False
# No Concurrent Partial Prefills so far.
if (self.max_num_partial_prefills
!= EngineArgs.max_num_partial_prefills
or self.max_long_partial_prefills
!= EngineArgs.max_long_partial_prefills):
_raise_or_fallback(feature_name="Concurrent Partial Prefill",
recommend_to_remove=False)
return False
# No OTLP observability so far.
if (self.otlp_traces_endpoint or self.collect_detailed_traces):
_raise_or_fallback(feature_name="--otlp-traces-endpoint",
recommend_to_remove=False)
return False
# Only Ngram speculative decoding so far.
is_ngram_enabled = False
is_eagle_enabled = False
if self.speculative_config is not None:
# This is supported but experimental (handled below).
speculative_method = self.speculative_config.get("method")
if speculative_method:
if speculative_method in ("ngram", "[ngram]"):
is_ngram_enabled = True
elif speculative_method == "eagle":
is_eagle_enabled = True
else:
speculative_model = self.speculative_config.get("model")
if speculative_model in ("ngram", "[ngram]"):
is_ngram_enabled = True
if not (is_ngram_enabled or is_eagle_enabled):
# Other speculative decoding methods are not supported yet.
_raise_or_fallback(feature_name="Speculative Decoding",
recommend_to_remove=False)
return False
# No Disaggregated Prefill so far.
if self.kv_transfer_config != EngineArgs.kv_transfer_config:
_raise_or_fallback(feature_name="--kv-transfer-config",
recommend_to_remove=False)
return False
# No FlashInfer or XFormers so far.
V1_BACKENDS = [
"FLASH_ATTN_VLLM_V1", "FLASH_ATTN", "PALLAS", "PALLAS_VLLM_V1",
"TRITON_ATTN_VLLM_V1", "TRITON_MLA", "FLASHMLA"
]
if (envs.is_set("VLLM_ATTENTION_BACKEND")
and envs.VLLM_ATTENTION_BACKEND not in V1_BACKENDS):
name = f"VLLM_ATTENTION_BACKEND={envs.VLLM_ATTENTION_BACKEND}"
_raise_or_fallback(feature_name=name, recommend_to_remove=True)
return False
# Platforms must decide if they can support v1 for this model
if not current_platform.supports_v1(model_config=model_config):
_raise_or_fallback(
feature_name=f"device type={current_platform.device_type}",
recommend_to_remove=False)
return False
#############################################################
# Experimental Features - allow users to opt in.
# Signal Handlers requires running in main thread.
if (threading.current_thread() != threading.main_thread()
and _warn_or_fallback("Engine in background thread")):
return False
# PP is supported on V1 with Ray distributed executor,
# but off for MP distributed executor for now.
if (self.pipeline_parallel_size > 1
and self.distributed_executor_backend != "ray"):
name = "Pipeline Parallelism without Ray distributed executor"
_raise_or_fallback(feature_name=name, recommend_to_remove=False)
return False
# ngram is supported on V1, but off by default for now.
if is_ngram_enabled and _warn_or_fallback("ngram"):
return False
# Eagle is under development, so we don't support it yet.
if is_eagle_enabled and _warn_or_fallback("Eagle"):
return False
# Non-CUDA is supported on V1, but off by default for now.
not_cuda = not current_platform.is_cuda()
if not_cuda and _warn_or_fallback( # noqa: SIM103
current_platform.device_name):
return False
#############################################################
return True
def _set_default_args_v0(self, model_config: ModelConfig) -> None:
"""Set Default Arguments for V0 Engine."""
max_model_len = model_config.max_model_len
use_long_context = max_model_len > 32768
if self.enable_chunked_prefill is None:
# Chunked prefill not supported for Multimodal or MLA in V0.
if model_config.is_multimodal_model or model_config.use_mla:
self.enable_chunked_prefill = False
# Enable chunked prefill by default for long context (> 32K)
# models to avoid OOM errors in initial memory profiling phase.
elif use_long_context:
from vllm.platforms import current_platform
is_gpu = current_platform.is_cuda()
use_sliding_window = (model_config.get_sliding_window()
is not None)
use_spec_decode = self.speculative_config is not None
if (is_gpu and not use_sliding_window and not use_spec_decode
and not self.enable_lora
and not self.enable_prompt_adapter
and model_config.runner_type != "pooling"):
self.enable_chunked_prefill = True
logger.warning(
"Chunked prefill is enabled by default for models "
"with max_model_len > 32K. Chunked prefill might "
"not work with some features or models. If you "
"encounter any issues, please disable by launching "
"with --enable-chunked-prefill=False.")
if self.enable_chunked_prefill is None:
self.enable_chunked_prefill = False
if not self.enable_chunked_prefill and use_long_context:
logger.warning(
"The model has a long context length (%s). This may cause"
"OOM during the initial memory profiling phase, or result "
"in low performance due to small KV cache size. Consider "
"setting --max-model-len to a smaller value.", max_model_len)
elif (self.enable_chunked_prefill
and model_config.runner_type == "pooling"):
msg = "Chunked prefill is not supported for pooling models"
raise ValueError(msg)
# if using prefix caching, we must set a hash algo
if self.enable_prefix_caching:
# Disable prefix caching for multimodal models for VLLM_V0.
if model_config.is_multimodal_model:
logger.warning(
"--enable-prefix-caching is not supported for multimodal "
"models in V0 and has been disabled.")
self.enable_prefix_caching = False
# VLLM_V0 only supports builtin hash algo for prefix caching.
if self.prefix_caching_hash_algo is None:
self.prefix_caching_hash_algo = "builtin"
elif self.prefix_caching_hash_algo == "sha256":
raise ValueError(
"sha256 is not supported for prefix caching in V0 engine. "
"Please use 'builtin'.")
# Set max_num_seqs to 256 for VLLM_V0.
if self.max_num_seqs is None:
self.max_num_seqs = 256
def _set_default_args_v1(self, usage_context: UsageContext) -> None:
"""Set Default Arguments for V1 Engine."""
# V1 always uses chunked prefills.
self.enable_chunked_prefill = True
# V1 enables prefix caching by default.
if self.enable_prefix_caching is None:
self.enable_prefix_caching = True
# if using prefix caching, we must set a hash algo
if self.enable_prefix_caching and self.prefix_caching_hash_algo is None:
self.prefix_caching_hash_algo = "builtin"
# V1 should use the new scheduler by default.
# Swap it only if this arg is set to the original V0 default
if self.scheduler_cls == EngineArgs.scheduler_cls:
self.scheduler_cls = "vllm.v1.core.sched.scheduler.Scheduler"
# When no user override, set the default values based on the usage
# context.
# Use different default values for different hardware.
# Try to query the device name on the current platform. If it fails,
# it may be because the platform that imports vLLM is not the same
# as the platform that vLLM is running on (e.g. the case of scaling
# vLLM with Ray) and has no GPUs. In this case we use the default
# values for non-H100/H200 GPUs.
try:
from vllm.platforms import current_platform
device_name = current_platform.get_device_name().lower()
except Exception:
# This is only used to set default_max_num_batched_tokens
device_name = "no-device"
if "h100" in device_name or "h200" in device_name:
# For H100 and H200, we use larger default values.
default_max_num_batched_tokens = {
UsageContext.LLM_CLASS: 16384,
UsageContext.OPENAI_API_SERVER: 8192,
}
default_max_num_seqs = 1024
else:
# TODO(woosuk): Tune the default values for other hardware.
default_max_num_batched_tokens = {
UsageContext.LLM_CLASS: 8192,
UsageContext.OPENAI_API_SERVER: 2048,
}
default_max_num_seqs = 256
use_context_value = usage_context.value if usage_context else None
if (self.max_num_batched_tokens is None
and usage_context in default_max_num_batched_tokens):
self.max_num_batched_tokens = default_max_num_batched_tokens[
usage_context]
logger.debug(
"Setting max_num_batched_tokens to %d for %s usage context.",
self.max_num_batched_tokens, use_context_value)
if self.max_num_seqs is None:
self.max_num_seqs = default_max_num_seqs
logger.debug("Setting max_num_seqs to %d for %s usage context.",
self.max_num_seqs, use_context_value)
@dataclass
class AsyncEngineArgs(EngineArgs):
"""Arguments for asynchronous vLLM engine."""
disable_log_requests: bool = False
@staticmethod
def add_cli_args(parser: FlexibleArgumentParser,
async_args_only: bool = False) -> FlexibleArgumentParser:
# Initialize plugin to update the parser, for example, The plugin may
# adding a new kind of quantization method to --quantization argument or
# a new device to --device argument.
load_general_plugins()
if not async_args_only:
parser = EngineArgs.add_cli_args(parser)
parser.add_argument('--disable-log-requests',
action='store_true',
help='Disable logging requests.')
from vllm.platforms import current_platform
current_platform.pre_register_and_update(parser)
return parser
def _raise_or_fallback(feature_name: str, recommend_to_remove: bool):
if envs.is_set("VLLM_USE_V1") and envs.VLLM_USE_V1:
raise NotImplementedError(
f"VLLM_USE_V1=1 is not supported with {feature_name}.")
msg = f"{feature_name} is not supported by the V1 Engine. "
msg += "Falling back to V0. "
if recommend_to_remove:
msg += f"We recommend to remove {feature_name} from your config "
msg += "in favor of the V1 Engine."
logger.warning(msg)
def _warn_or_fallback(feature_name: str) -> bool:
if envs.is_set("VLLM_USE_V1") and envs.VLLM_USE_V1:
logger.warning(
"Detected VLLM_USE_V1=1 with %s. Usage should "
"be considered experimental. Please report any "
"issues on Github.", feature_name)
should_exit = False
else:
logger.info(
"%s is experimental on VLLM_USE_V1=1. "
"Falling back to V0 Engine.", feature_name)
should_exit = True
return should_exit
def human_readable_int(value):
"""Parse human-readable integers like '1k', '2M', etc.
Including decimal values with decimal multipliers.
Examples:
- '1k' -> 1,000
- '1K' -> 1,024
- '25.6k' -> 25,600
"""
value = value.strip()
match = re.fullmatch(r'(\d+(?:\.\d+)?)([kKmMgGtT])', value)
if match:
decimal_multiplier = {
'k': 10**3,
'm': 10**6,
'g': 10**9,
}
binary_multiplier = {
'K': 2**10,
'M': 2**20,
'G': 2**30,
}
number, suffix = match.groups()
if suffix in decimal_multiplier:
mult = decimal_multiplier[suffix]
return int(float(number) * mult)
elif suffix in binary_multiplier:
mult = binary_multiplier[suffix]
# Do not allow decimals with binary multipliers
try:
return int(number) * mult
except ValueError as e:
raise argparse.ArgumentTypeError("Decimals are not allowed " \
f"with binary suffixes like {suffix}. Did you mean to use " \
f"{number}{suffix.lower()} instead?") from e
# Regular plain number.
return int(value)
# These functions are used by sphinx to build the documentation
def _engine_args_parser():
return EngineArgs.add_cli_args(FlexibleArgumentParser())
def _async_engine_args_parser():
return AsyncEngineArgs.add_cli_args(FlexibleArgumentParser(),
async_args_only=True)