vllm/tests/entrypoints/openai/test_chunked_prompt.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

129 lines
3.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
@pytest.fixture(scope="module")
def server():
args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--enforce-eager",
# lora config below
"--max-num-seqs",
"128",
"--enable-chunked-prefill",
"--max-num-batched-tokens",
"1000",
# large prompts create a lot of output
"--disable-log-requests",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
async def test_completion_stream_options_and_logprobs_with_long_prompts(
client: openai.AsyncOpenAI):
# Test stream with long prompt
prompt = "What is the capital of France?" * 400
stream = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats": True,
},
logprobs=5,
)
tokens_received = 0
finished = False
async for chunk in stream:
assert chunk.usage.prompt_tokens >= 0
assert chunk.usage.completion_tokens >= 0
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
chunk.usage.completion_tokens)
if not finished:
tokens_received += 1
assert chunk.choices[0].text
if chunk.choices[0].finish_reason is not None:
finished = True
if finished:
assert chunk.usage.completion_tokens == tokens_received
@pytest.mark.asyncio
async def test_chat_completion_stream_options_and_logprobs_with_long_prompts(
client: openai.AsyncOpenAI):
# Test stream with long prompt
messages = [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "What is the capital of France?" * 400
}]
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=5,
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats": True,
},
logprobs=True,
top_logprobs=5,
)
tokens_received = 0
empty_chunks_received = 0
finished = False
async for chunk in stream:
assert chunk.usage.prompt_tokens >= 0
assert chunk.usage.completion_tokens >= 0
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
chunk.usage.completion_tokens)
if not finished:
if chunk.choices[0].delta.content == "":
# when there is no tokens generated
assert chunk.usage.completion_tokens == 0
assert chunk.choices[0].logprobs is None
empty_chunks_received += 1
else:
tokens_received += 1
if chunk.choices[0].finish_reason is not None:
finished = True
if finished:
assert chunk.usage.completion_tokens == tokens_received
assert empty_chunks_received <= 1