vllm/tests/entrypoints/openai/test_audio.py
Cyrus Leung d9fc8cd9da
[V1] Enable multi-input by default (#15799)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-12 08:52:39 +00:00

386 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import openai
import pytest
import pytest_asyncio
from vllm.assets.audio import AudioAsset
from vllm.multimodal.utils import encode_audio_base64, fetch_audio
from ...utils import RemoteOpenAIServer
MODEL_NAME = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
TEST_AUDIO_URLS = [
AudioAsset("winning_call").url,
AudioAsset("mary_had_lamb").url,
]
MAXIMUM_AUDIOS = 2
@pytest.fixture(scope="module")
def server():
args = [
"--max-model-len",
"2048",
"--max-num-seqs",
"5",
"--enforce-eager",
"--trust-remote-code",
"--limit-mm-per-prompt",
f"audio={MAXIMUM_AUDIOS}",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.fixture(scope="session")
def base64_encoded_audio() -> dict[str, str]:
return {
audio_url: encode_audio_base64(*fetch_audio(audio_url))
for audio_url in TEST_AUDIO_URLS
}
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
async def test_single_chat_session_audio(client: openai.AsyncOpenAI,
model_name: str, audio_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "audio_url",
"audio_url": {
"url": audio_url
}
},
{
"type": "text",
"text": "What's happening in this audio?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
temperature=0.0,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=202, total_tokens=212)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
async def test_single_chat_session_audio_base64encoded(
client: openai.AsyncOpenAI, model_name: str, audio_url: str,
base64_encoded_audio: dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "audio_url",
"audio_url": {
"url":
f"data:audio/wav;base64,{base64_encoded_audio[audio_url]}"
}
},
{
"type": "text",
"text": "What's happening in this audio?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
temperature=0.0,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=202, total_tokens=212)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
async def test_single_chat_session_input_audio(
client: openai.AsyncOpenAI, model_name: str, audio_url: str,
base64_encoded_audio: dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "input_audio",
"input_audio": {
"data": base64_encoded_audio[audio_url],
"format": "wav"
}
},
{
"type": "text",
"text": "What's happening in this audio?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=202, total_tokens=212)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS)
async def test_chat_streaming_audio(client: openai.AsyncOpenAI,
model_name: str, audio_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "audio_url",
"audio_url": {
"url": audio_url
}
},
{
"type": "text",
"text": "What's happening in this audio?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
)
chunks: list[str] = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == stop_reason
assert delta.content
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS)
async def test_chat_streaming_input_audio(client: openai.AsyncOpenAI,
model_name: str, audio_url: str,
base64_encoded_audio: dict[str,
str]):
messages = [{
"role":
"user",
"content": [
{
"type": "input_audio",
"input_audio": {
"data": base64_encoded_audio[audio_url],
"format": "wav"
}
},
{
"type": "text",
"text": "What's happening in this audio?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
)
chunks: list[str] = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == stop_reason
assert delta.content
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize(
"audio_urls", [TEST_AUDIO_URLS, TEST_AUDIO_URLS + [TEST_AUDIO_URLS[0]]])
async def test_multi_audio_input(client: openai.AsyncOpenAI, model_name: str,
audio_urls: list[str]):
messages = [{
"role":
"user",
"content": [
*({
"type": "audio_url",
"audio_url": {
"url": audio_url
}
} for audio_url in audio_urls),
{
"type": "text",
"text": "What's happening in this audio?"
},
],
}]
if len(audio_urls) > MAXIMUM_AUDIOS:
with pytest.raises(openai.BadRequestError): # test multi-audio input
await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
completion = completion.choices[0].text
assert completion is not None and len(completion) >= 0
else:
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0