386 lines
12 KiB
Python
386 lines
12 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import openai
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from vllm.assets.audio import AudioAsset
|
|
from vllm.multimodal.utils import encode_audio_base64, fetch_audio
|
|
|
|
from ...utils import RemoteOpenAIServer
|
|
|
|
MODEL_NAME = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
|
|
TEST_AUDIO_URLS = [
|
|
AudioAsset("winning_call").url,
|
|
AudioAsset("mary_had_lamb").url,
|
|
]
|
|
MAXIMUM_AUDIOS = 2
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server():
|
|
args = [
|
|
"--max-model-len",
|
|
"2048",
|
|
"--max-num-seqs",
|
|
"5",
|
|
"--enforce-eager",
|
|
"--trust-remote-code",
|
|
"--limit-mm-per-prompt",
|
|
f"audio={MAXIMUM_AUDIOS}",
|
|
]
|
|
|
|
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(server):
|
|
async with server.get_async_client() as async_client:
|
|
yield async_client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def base64_encoded_audio() -> dict[str, str]:
|
|
return {
|
|
audio_url: encode_audio_base64(*fetch_audio(audio_url))
|
|
for audio_url in TEST_AUDIO_URLS
|
|
}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
|
|
async def test_single_chat_session_audio(client: openai.AsyncOpenAI,
|
|
model_name: str, audio_url: str):
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "audio_url",
|
|
"audio_url": {
|
|
"url": audio_url
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's happening in this audio?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test single completion
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
logprobs=True,
|
|
temperature=0.0,
|
|
top_logprobs=5)
|
|
assert len(chat_completion.choices) == 1
|
|
|
|
choice = chat_completion.choices[0]
|
|
assert choice.finish_reason == "length"
|
|
assert chat_completion.usage == openai.types.CompletionUsage(
|
|
completion_tokens=10, prompt_tokens=202, total_tokens=212)
|
|
|
|
message = choice.message
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 10
|
|
assert message.role == "assistant"
|
|
messages.append({"role": "assistant", "content": message.content})
|
|
|
|
# test multi-turn dialogue
|
|
messages.append({"role": "user", "content": "express your result in json"})
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
)
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
|
|
async def test_single_chat_session_audio_base64encoded(
|
|
client: openai.AsyncOpenAI, model_name: str, audio_url: str,
|
|
base64_encoded_audio: dict[str, str]):
|
|
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "audio_url",
|
|
"audio_url": {
|
|
"url":
|
|
f"data:audio/wav;base64,{base64_encoded_audio[audio_url]}"
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's happening in this audio?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test single completion
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
logprobs=True,
|
|
temperature=0.0,
|
|
top_logprobs=5)
|
|
assert len(chat_completion.choices) == 1
|
|
|
|
choice = chat_completion.choices[0]
|
|
assert choice.finish_reason == "length"
|
|
assert chat_completion.usage == openai.types.CompletionUsage(
|
|
completion_tokens=10, prompt_tokens=202, total_tokens=212)
|
|
|
|
message = choice.message
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 10
|
|
assert message.role == "assistant"
|
|
messages.append({"role": "assistant", "content": message.content})
|
|
|
|
# test multi-turn dialogue
|
|
messages.append({"role": "user", "content": "express your result in json"})
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
temperature=0.0,
|
|
)
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
|
|
async def test_single_chat_session_input_audio(
|
|
client: openai.AsyncOpenAI, model_name: str, audio_url: str,
|
|
base64_encoded_audio: dict[str, str]):
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "input_audio",
|
|
"input_audio": {
|
|
"data": base64_encoded_audio[audio_url],
|
|
"format": "wav"
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's happening in this audio?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test single completion
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
logprobs=True,
|
|
top_logprobs=5)
|
|
assert len(chat_completion.choices) == 1
|
|
|
|
choice = chat_completion.choices[0]
|
|
assert choice.finish_reason == "length"
|
|
assert chat_completion.usage == openai.types.CompletionUsage(
|
|
completion_tokens=10, prompt_tokens=202, total_tokens=212)
|
|
|
|
message = choice.message
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 10
|
|
assert message.role == "assistant"
|
|
messages.append({"role": "assistant", "content": message.content})
|
|
|
|
# test multi-turn dialogue
|
|
messages.append({"role": "user", "content": "express your result in json"})
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
)
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS)
|
|
async def test_chat_streaming_audio(client: openai.AsyncOpenAI,
|
|
model_name: str, audio_url: str):
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "audio_url",
|
|
"audio_url": {
|
|
"url": audio_url
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's happening in this audio?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test single completion
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
temperature=0.0,
|
|
)
|
|
output = chat_completion.choices[0].message.content
|
|
stop_reason = chat_completion.choices[0].finish_reason
|
|
|
|
# test streaming
|
|
stream = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
temperature=0.0,
|
|
stream=True,
|
|
)
|
|
chunks: list[str] = []
|
|
finish_reason_count = 0
|
|
async for chunk in stream:
|
|
delta = chunk.choices[0].delta
|
|
if delta.role:
|
|
assert delta.role == "assistant"
|
|
if delta.content:
|
|
chunks.append(delta.content)
|
|
if chunk.choices[0].finish_reason is not None:
|
|
finish_reason_count += 1
|
|
# finish reason should only return in last block
|
|
assert finish_reason_count == 1
|
|
assert chunk.choices[0].finish_reason == stop_reason
|
|
assert delta.content
|
|
assert "".join(chunks) == output
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS)
|
|
async def test_chat_streaming_input_audio(client: openai.AsyncOpenAI,
|
|
model_name: str, audio_url: str,
|
|
base64_encoded_audio: dict[str,
|
|
str]):
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "input_audio",
|
|
"input_audio": {
|
|
"data": base64_encoded_audio[audio_url],
|
|
"format": "wav"
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's happening in this audio?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test single completion
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
temperature=0.0,
|
|
)
|
|
output = chat_completion.choices[0].message.content
|
|
stop_reason = chat_completion.choices[0].finish_reason
|
|
|
|
# test streaming
|
|
stream = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
temperature=0.0,
|
|
stream=True,
|
|
)
|
|
chunks: list[str] = []
|
|
finish_reason_count = 0
|
|
async for chunk in stream:
|
|
delta = chunk.choices[0].delta
|
|
if delta.role:
|
|
assert delta.role == "assistant"
|
|
if delta.content:
|
|
chunks.append(delta.content)
|
|
if chunk.choices[0].finish_reason is not None:
|
|
finish_reason_count += 1
|
|
# finish reason should only return in last block
|
|
assert finish_reason_count == 1
|
|
assert chunk.choices[0].finish_reason == stop_reason
|
|
assert delta.content
|
|
assert "".join(chunks) == output
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize(
|
|
"audio_urls", [TEST_AUDIO_URLS, TEST_AUDIO_URLS + [TEST_AUDIO_URLS[0]]])
|
|
async def test_multi_audio_input(client: openai.AsyncOpenAI, model_name: str,
|
|
audio_urls: list[str]):
|
|
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
*({
|
|
"type": "audio_url",
|
|
"audio_url": {
|
|
"url": audio_url
|
|
}
|
|
} for audio_url in audio_urls),
|
|
{
|
|
"type": "text",
|
|
"text": "What's happening in this audio?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
if len(audio_urls) > MAXIMUM_AUDIOS:
|
|
with pytest.raises(openai.BadRequestError): # test multi-audio input
|
|
await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
temperature=0.0,
|
|
)
|
|
|
|
# the server should still work afterwards
|
|
completion = await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
)
|
|
completion = completion.choices[0].text
|
|
assert completion is not None and len(completion) >= 0
|
|
else:
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_completion_tokens=10,
|
|
temperature=0.0,
|
|
)
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 0
|