829 lines
31 KiB
Markdown
829 lines
31 KiB
Markdown
(supports-multimodal)=
|
|
|
|
# Multi-Modal Support
|
|
|
|
This document walks you through the steps to extend a basic model so that it accepts [multi-modal inputs](#multimodal-inputs).
|
|
|
|
## 1. Update the base vLLM model
|
|
|
|
It is assumed that you have already implemented the model in vLLM according to [these steps](#new-model-basic).
|
|
Further update the model as follows:
|
|
|
|
- Reserve a keyword parameter in {meth}`~torch.nn.Module.forward` for each input tensor that corresponds to a multi-modal input, as shown in the following example:
|
|
|
|
```diff
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
+ pixel_values: torch.Tensor,
|
|
) -> SamplerOutput:
|
|
```
|
|
|
|
More conveniently, you can simply pass `**kwargs` to the {meth}`~torch.nn.Module.forward` method and retrieve the keyword parameters for multimodal inputs from it.
|
|
|
|
- Implement {meth}`~vllm.model_executor.models.interfaces.SupportsMultiModal.get_multimodal_embeddings` that returns the embeddings from running the multimodal inputs through the multimodal tokenizer of the model. Below we provide a boilerplate of a typical implementation pattern, but feel free to adjust it to your own needs.
|
|
|
|
```python
|
|
class YourModelForImage2Seq(nn.Module):
|
|
...
|
|
|
|
def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor:
|
|
|
|
assert self.vision_encoder is not None
|
|
image_features = self.vision_encoder(image_input)
|
|
return self.multi_modal_projector(image_features)
|
|
|
|
def get_multimodal_embeddings(
|
|
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
|
|
|
|
# Validate the multimodal input keyword arguments
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return None
|
|
|
|
# Run multimodal inputs through encoder and projector
|
|
vision_embeddings = self._process_image_input(image_input)
|
|
return vision_embeddings
|
|
```
|
|
|
|
:::{important}
|
|
The returned `multimodal_embeddings` must be either a **3D {class}`torch.Tensor`** of shape `(num_items, feature_size, hidden_size)`, or a **list / tuple of 2D {class}`torch.Tensor`'s** of shape `(feature_size, hidden_size)`, so that `multimodal_embeddings[i]` retrieves the embeddings generated from the `i`-th multimodal data item (e.g, image) of the request.
|
|
:::
|
|
|
|
- Implement {meth}`~vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings` to merge `multimodal_embeddings` with text embeddings from the `input_ids`. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.
|
|
|
|
```python
|
|
from .utils import merge_multimodal_embeddings
|
|
|
|
class YourModelForImage2Seq(nn.Module):
|
|
...
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
|
) -> torch.Tensor:
|
|
|
|
# `get_input_embeddings` should already be implemented for the language
|
|
# model as one of the requirements of basic vLLM model implementation.
|
|
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
|
|
|
if multimodal_embeddings is not None:
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
multimodal_embeddings=multimodal_embeddings,
|
|
placeholder_token_id=self.config.image_token_index)
|
|
|
|
return inputs_embeds
|
|
```
|
|
|
|
- Implement {meth}`~vllm.model_executor.models.interfaces.SupportsMultiModal.get_language_model` getter to provide stable access to the underlying language model.
|
|
|
|
```python
|
|
class YourModelForImage2Seq(nn.Module):
|
|
...
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
# Change `language_model` according to your implementation.
|
|
return self.language_model
|
|
```
|
|
|
|
- Once the above steps are done, update the model class with the {class}`~vllm.model_executor.models.interfaces.SupportsMultiModal` interface.
|
|
|
|
```diff
|
|
+ from vllm.model_executor.models.interfaces import SupportsMultiModal
|
|
|
|
- class YourModelForImage2Seq(nn.Module):
|
|
+ class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
|
|
```
|
|
|
|
:::{note}
|
|
The model class does not have to be named {code}`*ForCausalLM`.
|
|
Check out [the HuggingFace Transformers documentation](https://huggingface.co/docs/transformers/model_doc/auto#multimodal) for some examples.
|
|
:::
|
|
|
|
## 2. Specify processing information
|
|
|
|
Next, create a subclass of {class}`~vllm.multimodal.processing.BaseProcessingInfo`
|
|
to provide basic information related to HF processing.
|
|
|
|
### Maximum number of input items
|
|
|
|
You need to override the abstract method {meth}`~vllm.multimodal.processing.BaseProcessingInfo.get_supported_mm_limits`
|
|
to return the maximum number of input items for each modality supported by the model.
|
|
|
|
For example, if the model supports any number of images but only one video per prompt:
|
|
|
|
```python
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"image": None, "video": 1}
|
|
```
|
|
|
|
## 3. Specify dummy inputs
|
|
|
|
Then, inherit {class}`~vllm.multimodal.profiling.BaseDummyInputsBuilder` to construct dummy inputs for
|
|
HF processing as well as memory profiling.
|
|
|
|
### For memory profiling
|
|
|
|
Override the abstract method {meth}`~vllm.multimodal.profiling.BaseDummyInputsBuilder.get_dummy_processor_inputs`
|
|
to construct dummy inputs for memory profiling. This dummy input should result in the worst-case memory usage of
|
|
the model so that vLLM can reserve the correct amount of memory for it.
|
|
|
|
Assuming that the memory usage increases with the number of tokens, the dummy input can be constructed to maximize the number of output embeddings, which is the same number as placeholder feature tokens.
|
|
|
|
::::{tab-set}
|
|
:::{tab-item} Basic example: LLaVA
|
|
:sync: llava
|
|
|
|
Looking at the code of HF's `LlavaForConditionalGeneration`:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
|
|
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
|
|
n_image_features = image_features.shape[0] * image_features.shape[1]
|
|
|
|
if n_image_tokens != n_image_features:
|
|
raise ValueError(
|
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
|
)
|
|
special_image_mask = (
|
|
(input_ids == self.config.image_token_index)
|
|
.unsqueeze(-1)
|
|
.expand_as(inputs_embeds)
|
|
.to(inputs_embeds.device)
|
|
)
|
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
|
```
|
|
|
|
The number of placeholder feature tokens per image is `image_features.shape[1]`.
|
|
`image_features` is calculated inside the `get_image_features` method:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
|
|
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
|
|
|
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
|
if vision_feature_select_strategy == "default":
|
|
selected_image_feature = selected_image_feature[:, 1:]
|
|
elif vision_feature_select_strategy == "full":
|
|
selected_image_feature = selected_image_feature
|
|
else:
|
|
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
|
|
image_features = self.multi_modal_projector(selected_image_feature)
|
|
return image_features
|
|
```
|
|
|
|
We can infer that `image_features.shape[1]` is based on `image_outputs.hidden_states.shape[1]` from the vision tower
|
|
(`CLIPVisionModel` for the [`llava-hf/llava-1.5-7b-hf`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) model).
|
|
Moreover, we only need the sequence length (the second dimension of the tensor) to get `image_features.shape[1]`.
|
|
The sequence length is determined by the initial hidden states in `CLIPVisionTransformer` since the attention
|
|
mechanism doesn't change the sequence length of the output hidden states.
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L1094-L1102
|
|
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
|
hidden_states = self.pre_layrnorm(hidden_states)
|
|
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
```
|
|
|
|
To find the sequence length, we turn to the code of `CLIPVisionEmbeddings`:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
|
|
target_dtype = self.patch_embedding.weight.dtype
|
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
|
if interpolate_pos_encoding:
|
|
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
|
else:
|
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
|
return embeddings
|
|
```
|
|
|
|
We can infer that `embeddings.shape[1] == self.num_positions`, where
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L195-L196
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.num_positions = self.num_patches + 1
|
|
```
|
|
|
|
Overall, the number of placeholder feature tokens for an image can be calculated as:
|
|
|
|
```python
|
|
def get_num_image_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
hf_config = self.get_hf_config()
|
|
hf_processor = self.get_hf_processor()
|
|
|
|
image_size = hf_config.vision_config.image_size
|
|
patch_size = hf_config.vision_config.patch_size
|
|
|
|
num_image_tokens = (image_size // patch_size) ** 2 + 1
|
|
if hf_processor.vision_feature_select_strategy == "default":
|
|
num_image_tokens -= 1
|
|
|
|
return num_image_tokens
|
|
```
|
|
|
|
Notice that the number of image tokens doesn't depend on the image width and height.
|
|
We can simply use a dummy `image_size`:
|
|
|
|
```python
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
hf_config = self.get_hf_config()
|
|
width = height = hf_config.image_size
|
|
return ImageSize(width=width, height=height)
|
|
|
|
def get_dummy_processor_inputs(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> ProcessorInputs:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
image_token = processor.image_token
|
|
|
|
hf_config = self.get_hf_config()
|
|
target_width, target_height = self.info.get_image_size_with_most_features()
|
|
|
|
mm_data = {
|
|
"image":
|
|
self._get_dummy_images(width=target_width,
|
|
height=target_height,
|
|
num_images=num_images)
|
|
}
|
|
|
|
return ProcessorInputs(
|
|
prompt_text=image_token * num_images,
|
|
mm_data=mm_data,
|
|
)
|
|
```
|
|
|
|
:::
|
|
|
|
:::{tab-item} No input placeholders: Fuyu
|
|
:sync: fuyu
|
|
|
|
Looking at the code of HF's `FuyuForCausalLM`:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
|
|
if image_patches is not None and past_key_values is None:
|
|
patch_embeddings = [
|
|
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
|
|
.squeeze(0)
|
|
.to(inputs_embeds.device)
|
|
for patch in image_patches
|
|
]
|
|
inputs_embeds = self.gather_continuous_embeddings(
|
|
word_embeddings=inputs_embeds,
|
|
continuous_embeddings=patch_embeddings,
|
|
image_patch_input_indices=image_patches_indices,
|
|
)
|
|
```
|
|
|
|
The number of placeholder feature tokens for the `i`th item in the batch is `patch_embeddings[i].shape[0]`,
|
|
which is the same as `image_patches[i].shape[0]`, i.e. `num_total_patches`.
|
|
|
|
Unlike LLaVA, Fuyu does not define the number of patches inside the modeling file. Where can we get more information?
|
|
Considering that the model input comes from the output of `FuyuProcessor`, let's **look at the preprocessing files**.
|
|
|
|
The image outputs are obtained by calling `FuyuImageProcessor.preprocess` and then
|
|
`FuyuImageProcessor.preprocess_with_tokenizer_info` inside `FuyuProcessor`.
|
|
|
|
In `FuyuImageProcessor.preprocess`, the images are resized and padded to the target `FuyuImageProcessor.size`,
|
|
returning the dimensions after resizing (but before padding) as metadata.
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
|
|
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
|
|
batch_images = image_encoding["images"]
|
|
image_unpadded_heights = image_encoding["image_unpadded_heights"]
|
|
image_unpadded_widths = image_encoding["image_unpadded_widths"]
|
|
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L480-L
|
|
if do_resize:
|
|
batch_images = [
|
|
[self.resize(image, size=size, input_data_format=input_data_format) for image in images]
|
|
for images in batch_images
|
|
]
|
|
|
|
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
|
|
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
|
|
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
|
|
|
|
if do_pad:
|
|
batch_images = [
|
|
[
|
|
self.pad_image(
|
|
image,
|
|
size=size,
|
|
mode=padding_mode,
|
|
constant_values=padding_value,
|
|
input_data_format=input_data_format,
|
|
)
|
|
for image in images
|
|
]
|
|
for images in batch_images
|
|
]
|
|
```
|
|
|
|
In `FuyuImageProcessor.preprocess_with_tokenizer_info`, the images are split into patches based on this metadata:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
|
|
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
|
|
image_input=tensor_batch_images,
|
|
image_present=image_present,
|
|
image_unpadded_h=image_unpadded_heights,
|
|
image_unpadded_w=image_unpadded_widths,
|
|
image_placeholder_id=image_placeholder_id,
|
|
image_newline_id=image_newline_id,
|
|
variable_sized=True,
|
|
)
|
|
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L638-L658
|
|
image_height, image_width = image.shape[1], image.shape[2]
|
|
if variable_sized: # variable_sized=True
|
|
new_h = min(
|
|
image_height,
|
|
math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
|
|
)
|
|
new_w = min(
|
|
image_width,
|
|
math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
|
|
)
|
|
image = image[:, :new_h, :new_w]
|
|
image_height, image_width = new_h, new_w
|
|
|
|
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
|
|
tensor_of_image_ids = torch.full(
|
|
[num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
|
|
)
|
|
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
|
|
assert num_patches == patches.shape[0]
|
|
```
|
|
|
|
The number of patches is in turn defined by `FuyuImageProcessor.get_num_patches`:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
|
|
patch_size = patch_size if patch_size is not None else self.patch_size
|
|
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
|
|
|
|
if image_height % patch_height != 0:
|
|
raise ValueError(f"{image_height=} must be divisible by {patch_height}")
|
|
if image_width % patch_width != 0:
|
|
raise ValueError(f"{image_width=} must be divisible by {patch_width}")
|
|
|
|
num_patches_per_dim_h = image_height // patch_height
|
|
num_patches_per_dim_w = image_width // patch_width
|
|
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
|
|
```
|
|
|
|
These image patches correspond to placeholder tokens (`|SPEAKER|`). So, we just need to maximize the number of image patches. Since input images are first resized
|
|
to fit within `image_processor.size`, we can maximize the number of image patches by inputting an image with size equal to `image_processor.size`.
|
|
|
|
```python
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
image_processor = self.get_image_processor()
|
|
return ImageSize(width=image_processor.size["width"],
|
|
height=image_processor.size["height"])
|
|
```
|
|
|
|
Fuyu does not expect image placeholders in the inputs to HF processor, so
|
|
the dummy prompt text is empty regardless of the number of images.
|
|
Otherwise, the logic of this method is very similar to LLaVA:
|
|
|
|
```python
|
|
def get_dummy_processor_inputs(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> ProcessorInputs:
|
|
target_width, target_height = \
|
|
self.info.get_image_size_with_most_features()
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
mm_data = {
|
|
"image":
|
|
self._get_dummy_images(width=target_width,
|
|
height=target_height,
|
|
num_images=num_images)
|
|
}
|
|
|
|
return ProcessorInputs(
|
|
prompt_text="",
|
|
mm_data=mm_data,
|
|
)
|
|
```
|
|
|
|
:::
|
|
|
|
::::
|
|
|
|
## 4. Specify processing details
|
|
|
|
Afterwards, create a subclass of {class}`~vllm.multimodal.processing.BaseMultiModalProcessor`
|
|
to fill in the missing details about HF processing.
|
|
|
|
:::{seealso}
|
|
[Multi-Modal Data Processing](#mm-processing)
|
|
:::
|
|
|
|
### Multi-modal fields
|
|
|
|
Override {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_mm_fields_config` to
|
|
return a schema of the tensors outputted by the HF processor that are related to the input multi-modal items.
|
|
|
|
:::::{tab-set}
|
|
::::{tab-item} Basic example: LLaVA
|
|
:sync: llava
|
|
|
|
The output of `CLIPImageProcessor` is a simple tensor with shape
|
|
`(num_images, num_channels, image_height, image_width)`:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/image_processing_clip.py#L339-L345
|
|
images = [
|
|
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
|
for image in all_images
|
|
]
|
|
|
|
data = {"pixel_values": images}
|
|
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
```
|
|
|
|
So, we override {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_mm_fields_config` as follows:
|
|
|
|
```python
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
```
|
|
|
|
:::{note}
|
|
Our [actual code](gh-file:vllm/model_executor/models/llava.py) additionally supports
|
|
pre-computed image embeddings, which can be passed to be model via the `image_embeds` argument.
|
|
:::
|
|
|
|
::::
|
|
|
|
::::{tab-item} With postprocessing: Fuyu
|
|
:sync: fuyu
|
|
|
|
The `image_patches` output of `FuyuImageProcessor.preprocess_with_tokenizer_info` concatenates
|
|
the patches from each image belonging to an item in the batch:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L673-L679
|
|
image_input_ids.append(tensor_of_image_ids)
|
|
image_patches.append(patches)
|
|
else:
|
|
image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))
|
|
|
|
batch_image_input_ids.append(image_input_ids)
|
|
batch_image_patches.append(image_patches)
|
|
```
|
|
|
|
The shape of `image_patches` outputted by `FuyuImageProcessor` is therefore
|
|
`(1, num_images, num_patches, patch_width * patch_height * num_channels)`.
|
|
|
|
In order to support the use of {func}`MultiModalFieldConfig.batched` like in LLaVA,
|
|
we remove the extra batch dimension by overriding {meth}`BaseMultiModalProcessor._call_hf_processor`:
|
|
|
|
```python
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
)
|
|
|
|
image_patches = processed_outputs.get("image_patches")
|
|
if image_patches is not None:
|
|
images = mm_data["images"]
|
|
assert isinstance(images, list)
|
|
|
|
# Original output: (1, num_images, Pn, Px * Py * C)
|
|
# New output: (num_images, Pn, Px * Py * C)
|
|
assert (isinstance(image_patches, list)
|
|
and len(image_patches) == 1)
|
|
assert (isinstance(image_patches[0], torch.Tensor)
|
|
and len(image_patches[0]) == len(images))
|
|
|
|
processed_outputs["image_patches"] = image_patches[0]
|
|
|
|
return processed_outputs
|
|
```
|
|
|
|
:::{note}
|
|
Our [actual code](gh-file:vllm/model_executor/models/fuyu.py) has special handling
|
|
for text-only inputs to prevent unnecessary warnings from HF processor.
|
|
:::
|
|
|
|
This lets us override {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_mm_fields_config` as follows:
|
|
|
|
```python
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(image_patches=MultiModalFieldConfig.batched("image"))
|
|
```
|
|
|
|
::::
|
|
|
|
:::::
|
|
|
|
### Prompt updates
|
|
|
|
Override {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates` to
|
|
return a list of {class}`~vllm.multimodal.processing.PromptUpdate` instances.
|
|
|
|
Each {class}`~vllm.multimodal.processing.PromptUpdate` instance specifies an update operation
|
|
(e.g.: insertion, replacement) performed by the HF processor.
|
|
|
|
::::{tab-set}
|
|
:::{tab-item} Basic example: LLaVA
|
|
:sync: llava
|
|
|
|
Looking at HF's `LlavaProcessor`:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/processing_llava.py#L167-L170
|
|
prompt_strings = []
|
|
for sample in text:
|
|
sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
|
|
prompt_strings.append(sample)
|
|
```
|
|
|
|
It simply repeats each input `image_token` a number of times equal to the number of placeholder feature tokens (`num_image_tokens`).
|
|
Based on this, we override {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates` as follows:
|
|
|
|
```python
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_config = self.info.get_hf_config()
|
|
image_token_id = hf_config.image_token_index
|
|
|
|
def get_replacement(item_idx: int):
|
|
images = mm_items.get_items("image", ImageProcessorItems)
|
|
|
|
image_size = images.get_image_size(item_idx)
|
|
num_image_tokens = self.info.get_num_image_tokens(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
)
|
|
|
|
return [image_token_id] * num_image_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=[image_token_id],
|
|
replacement=get_replacement,
|
|
),
|
|
]
|
|
```
|
|
|
|
:::
|
|
|
|
:::{tab-item} Handling additional tokens: Fuyu
|
|
:sync: fuyu
|
|
|
|
Recall the layout of feature tokens from Step 2:
|
|
|
|
```
|
|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|
|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|
|
...
|
|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|
|
```
|
|
|
|
We define a helper function to return `ncols` and `nrows` directly:
|
|
|
|
```python
|
|
def get_image_feature_grid_size(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> tuple[int, int]:
|
|
image_processor = self.get_image_processor()
|
|
target_width = image_processor.size["width"]
|
|
target_height = image_processor.size["height"]
|
|
patch_width = image_processor.patch_size["width"]
|
|
patch_height = image_processor.patch_size["height"]
|
|
|
|
if not (image_width <= target_width and image_height <= target_height):
|
|
height_scale_factor = target_height / image_height
|
|
width_scale_factor = target_width / image_width
|
|
optimal_scale_factor = min(height_scale_factor, width_scale_factor)
|
|
|
|
image_height = int(image_height * optimal_scale_factor)
|
|
image_width = int(image_width * optimal_scale_factor)
|
|
|
|
ncols = math.ceil(image_width / patch_width)
|
|
nrows = math.ceil(image_height / patch_height)
|
|
return ncols, nrows
|
|
```
|
|
|
|
Based on this, we can initially define our replacement tokens as:
|
|
|
|
```python
|
|
def get_replacement(item_idx: int):
|
|
images = mm_items.get_items("image", ImageProcessorItems)
|
|
image_size = images.get_image_size(item_idx)
|
|
|
|
ncols, nrows = self.info.get_image_feature_grid_size(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
)
|
|
|
|
# `_IMAGE_TOKEN_ID` corresponds to `|SPEAKER|`
|
|
# `_NEWLINE_TOKEN_ID` corresponds to `|NEWLINE|`
|
|
return ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows
|
|
```
|
|
|
|
However, this is not entirely correct. After `FuyuImageProcessor.preprocess_with_tokenizer_info` is called,
|
|
a BOS token (`<s>`) is also added to the promopt:
|
|
|
|
```python
|
|
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
|
|
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
|
|
image_input=tensor_batch_images,
|
|
image_present=image_present,
|
|
image_unpadded_h=image_unpadded_heights,
|
|
image_unpadded_w=image_unpadded_widths,
|
|
image_placeholder_id=image_placeholder_id,
|
|
image_newline_id=image_newline_id,
|
|
variable_sized=True,
|
|
)
|
|
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
|
|
tokenizer=self.tokenizer,
|
|
prompts=prompts,
|
|
scale_factors=scale_factors,
|
|
max_tokens_to_generate=self.max_tokens_to_generate,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
add_BOS=True,
|
|
add_beginning_of_answer_token=True,
|
|
)
|
|
```
|
|
|
|
To assign the vision embeddings to only the image tokens, instead of a string
|
|
you can return an instance of {class}`~vllm.multimodal.processing.PromptUpdateDetails`:
|
|
|
|
```python
|
|
hf_config = self.info.get_hf_config()
|
|
bos_token_id = hf_config.bos_token_id # `<s>`
|
|
assert isinstance(bos_token_id, int)
|
|
|
|
def get_replacement_fuyu(item_idx: int):
|
|
images = mm_items.get_items("image", ImageProcessorItems)
|
|
image_size = images.get_image_size(item_idx)
|
|
|
|
ncols, nrows = self.info.get_image_feature_grid_size(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
)
|
|
image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
|
|
[_NEWLINE_TOKEN_ID]) * nrows
|
|
|
|
return PromptUpdateDetails.select_token_id(
|
|
image_tokens + [bos_token_id],
|
|
embed_token_id=_IMAGE_TOKEN_ID,
|
|
)
|
|
```
|
|
|
|
Finally, noticing that the HF processor removes the `|ENDOFTEXT|` token from the tokenized prompt,
|
|
we can search for it to conduct the replacement at the start of the string:
|
|
|
|
```python
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_config = self.info.get_hf_config()
|
|
bos_token_id = hf_config.bos_token_id
|
|
assert isinstance(bos_token_id, int)
|
|
|
|
tokenizer = self.info.get_tokenizer()
|
|
eot_token_id = tokenizer.bos_token_id
|
|
assert isinstance(eot_token_id, int)
|
|
|
|
def get_replacement_fuyu(item_idx: int):
|
|
images = mm_items.get_items("image", ImageProcessorItems)
|
|
image_size = images.get_image_size(item_idx)
|
|
|
|
ncols, nrows = self.info.get_image_feature_grid_size(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
)
|
|
image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
|
|
[_NEWLINE_TOKEN_ID]) * nrows
|
|
|
|
return PromptUpdateDetails.select_token_id(
|
|
image_tokens + [bos_token_id],
|
|
embed_token_id=_IMAGE_TOKEN_ID,
|
|
)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=[eot_token_id],
|
|
replacement=get_replacement_fuyu,
|
|
)
|
|
]
|
|
```
|
|
|
|
:::
|
|
|
|
::::
|
|
|
|
## 5. Register processor-related classes
|
|
|
|
After you have defined {class}`~vllm.multimodal.processing.BaseProcessingInfo` (Step 2),
|
|
{class}`~vllm.multimodal.profiling.BaseDummyInputsBuilder` (Step 3),
|
|
and {class}`~vllm.multimodal.processing.BaseMultiModalProcessor` (Step 4),
|
|
decorate the model class with {meth}`MULTIMODAL_REGISTRY.register_processor <vllm.multimodal.registry.MultiModalRegistry.register_processor>`
|
|
to register them to the multi-modal registry:
|
|
|
|
```diff
|
|
from vllm.model_executor.models.interfaces import SupportsMultiModal
|
|
+ from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
|
|
+ @MULTIMODAL_REGISTRY.register_processor(YourMultiModalProcessor,
|
|
+ info=YourProcessingInfo,
|
|
+ dummy_inputs=YourDummyInputsBuilder)
|
|
class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
|
|
```
|
|
|
|
## Notes
|
|
|
|
### Inserting feature tokens without replacement
|
|
|
|
Some HF processors directly insert feature tokens without replacing anything in the original prompt. In that case, you can use {class}`~vllm.multimodal.processing.PromptInsertion` instead of {class}`~vllm.multimodal.processing.PromptReplacement` inside {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates`.
|
|
|
|
Examples:
|
|
|
|
- BLIP-2 (insert at start of prompt): <gh-file:vllm/model_executor/models/blip2.py>
|
|
- Florence2 (insert at start of prompt): <gh-file:vllm/model_executor/models/florence2.py>
|
|
- Molmo (insert after `<|endoftext|>` token): <gh-file:vllm/model_executor/models/molmo.py>
|
|
|
|
### Handling prompt updates unrelated to multi-modal data
|
|
|
|
{meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates` assumes that each application of prompt update corresponds to one multi-modal item. If the HF processor performs additional processing regardless of how many multi-modal items there are, you should override {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_tokens_only` so that the processed token inputs are consistent with the result of applying the HF processor on text inputs. This is because token inputs bypass the HF processor according to [our design](#mm-processing).
|
|
|
|
Examples:
|
|
|
|
- Chameleon (appends `sep_token`): <gh-file:vllm/model_executor/models/chameleon.py>
|
|
- Fuyu (appends `boa_token`): <gh-file:vllm/model_executor/models/fuyu.py>
|
|
- Molmo (applies chat template which is not defined elsewhere): <gh-file:vllm/model_executor/models/molmo.py>
|
|
|
|
### Custom HF processor
|
|
|
|
Some models don't define a HF processor class on HF Hub. In that case, you can define a custom HF processor that has the same call signature as HF processors and pass it to {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._call_hf_processor`.
|
|
|
|
Examples:
|
|
|
|
- DeepSeek-VL2: <gh-file:vllm/model_executor/models/deepseek_vl2.py>
|
|
- InternVL: <gh-file:vllm/model_executor/models/internvl.py>
|
|
- Qwen-VL: <gh-file:vllm/model_executor/models/qwen_vl.py>
|