vllm/vllm/entrypoints/openai/reasoning_parsers/abs_reasoning_parsers.py
Robin d6cd59f122
[Frontend] Support tool calling and reasoning parser (#14511)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-03-23 14:00:07 -07:00

197 lines
6.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import os
from abc import abstractmethod
from collections.abc import Sequence
from functools import cached_property
from typing import Callable, Optional, Union
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage)
from vllm.logger import init_logger
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils import import_from_path, is_list_of
logger = init_logger(__name__)
class ReasoningParser:
"""
Abstract reasoning parser class that should not be used directly.
Provided and methods should be used in derived classes.
It is used to extract reasoning content from the model output.
"""
def __init__(self, tokenizer: AnyTokenizer):
self.model_tokenizer = tokenizer
@cached_property
def vocab(self) -> dict[str, int]:
# NOTE: Only PreTrainedTokenizerFast is guaranteed to have .vocab
# whereas all tokenizers have .get_vocab()
return self.model_tokenizer.get_vocab()
def extract_reasoning_content(
self, model_output: str, request: ChatCompletionRequest
) -> tuple[Optional[str], Optional[str]]:
"""
Extract reasoning content from a complete model-generated string.
Used for non-streaming responses where we have the entire model response
available before sending to the client.
Parameters:
model_output: str
The model-generated string to extract reasoning content from.
request: ChatCompletionRequest
The request object that was used to generate the model_output.
Returns:
tuple[Optional[str], Optional[str]]
A tuple containing the reasoning content and the content.
"""
raise NotImplementedError(
"AbstractReasoningParser.extract_reasoning_calls "
"has not been implemented!")
def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
"""
Instance method that should be implemented for extracting reasoning
from an incomplete response; for use when handling reasoning calls and
streaming. Has to be an instance method because it requires state -
the current tokens/diffs, but also the information about what has
previously been parsed and extracted (see constructor)
"""
raise NotImplementedError(
"AbstractReasoningParser.extract_reasoning_content_streaming "
"has not been implemented!")
# TODO: need to rebase by PR #14428
@abstractmethod
def is_reasoning_end(self, input_ids: list[int]) -> bool:
"""
Check if the reasoning content ends in the input_ids.
Parameters:
input_ids: list[int]
The input_ids of the model output.
Returns:
bool
True if the reasoning content ends in the input_ids.
"""
raise NotImplementedError(
"AbstractReasoningParser.is_reasoning_end has"
"not been implemented!")
# TODO: need to rebase by PR #14428
@abstractmethod
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
"""
Extract content token ids from the input_ids.
Parameters:
input_ids: list[int]
The input_ids of the model output.
Returns:
list[int]
The extracted content from the input_ids.
"""
raise NotImplementedError(
"AbstractReasoningParser.extract_content_ids has"
" not been implemented!")
class ReasoningParserManager:
reasoning_parsers: dict[str, type] = {}
@classmethod
def get_reasoning_parser(cls, name) -> type:
"""
Get reasoning parser by name which is registered by `register_module`.
Raise a KeyError exception if the name is not registered.
"""
if name in cls.reasoning_parsers:
return cls.reasoning_parsers[name]
raise KeyError(f"reasoning helper: '{name}' not found in "
"reasoning_parsers")
@classmethod
def _register_module(cls,
module: type,
module_name: Optional[Union[str, list[str]]] = None,
force: bool = True) -> None:
if not issubclass(module, ReasoningParser):
raise TypeError("module must be subclass of ReasoningParser, "
f"but got {type(module)}")
if module_name is None:
module_name = module.__name__
if isinstance(module_name, str):
module_name = [module_name]
for name in module_name:
if not force and name in cls.reasoning_parsers:
existed_module = cls.reasoning_parsers[name]
raise KeyError(f"{name} is already registered "
f"at {existed_module.__module__}")
cls.reasoning_parsers[name] = module
@classmethod
def register_module(
cls,
name: Optional[Union[str, list[str]]] = None,
force: bool = True,
module: Union[type, None] = None) -> Union[type, Callable]:
"""
Register module with the given name or name list. it can be used as a
decoder(with module as None) or normal function(with module as not
None).
"""
if not isinstance(force, bool):
raise TypeError(f"force must be a boolean, but got {type(force)}")
# raise the error ahead of time
if not (name is None or isinstance(name, str)
or is_list_of(name, str)):
raise TypeError(
"name must be None, an instance of str, or a sequence of str, "
f"but got {type(name)}")
# use it as a normal method: x.register_module(module=SomeClass)
if module is not None:
cls._register_module(module=module, module_name=name, force=force)
return module
# use it as a decorator: @x.register_module()
def _register(module):
cls._register_module(module=module, module_name=name, force=force)
return module
return _register
@classmethod
def import_reasoning_parser(cls, plugin_path: str) -> None:
"""
Import a user-defined reasoning parser by the path
of the reasoning parser define file.
"""
module_name = os.path.splitext(os.path.basename(plugin_path))[0]
try:
import_from_path(module_name, plugin_path)
except Exception:
logger.exception("Failed to load module '%s' from %s.",
module_name, plugin_path)
return