120 lines
4.6 KiB
Python
120 lines
4.6 KiB
Python
import os
|
|
|
|
import pytest
|
|
|
|
from vllm.model_executor.layers.pooler import CLSPool, PoolingType
|
|
from vllm.model_executor.models.bert import BertEmbeddingModel
|
|
from vllm.model_executor.models.roberta import RobertaEmbeddingModel
|
|
from vllm.platforms import current_platform
|
|
|
|
MAX_MODEL_LEN = 128
|
|
MODEL_NAME = os.environ.get("MODEL_NAME", "BAAI/bge-base-en-v1.5")
|
|
REVISION = os.environ.get("REVISION", "main")
|
|
|
|
MODEL_NAME_ROBERTA = os.environ.get("MODEL_NAME",
|
|
"intfloat/multilingual-e5-large")
|
|
REVISION_ROBERTA = os.environ.get("REVISION", "main")
|
|
|
|
|
|
@pytest.mark.skipif(current_platform.is_rocm(),
|
|
reason="Xformers backend is not supported on ROCm.")
|
|
def test_model_loading_with_params(vllm_runner):
|
|
"""
|
|
Test parameter weight loading with tp>1.
|
|
"""
|
|
with vllm_runner(model_name=MODEL_NAME,
|
|
revision=REVISION,
|
|
dtype="float16",
|
|
max_model_len=MAX_MODEL_LEN) as model:
|
|
output = model.encode("Write a short story about a robot that"
|
|
" dreams for the first time.\n")
|
|
|
|
model_config = model.model.llm_engine.model_config
|
|
|
|
model_tokenizer = model.model.llm_engine.tokenizer
|
|
|
|
# asserts on the bert model config file
|
|
assert model_config.encoder_config["max_seq_length"] == 512
|
|
assert model_config.encoder_config["do_lower_case"]
|
|
|
|
# asserts on the pooling config files
|
|
assert model_config.pooler_config.pooling_type == PoolingType.CLS.name
|
|
assert model_config.pooler_config.pooling_norm
|
|
|
|
# asserts on the tokenizer loaded
|
|
assert model_tokenizer.tokenizer_id == "BAAI/bge-base-en-v1.5"
|
|
assert model_tokenizer.tokenizer_config["do_lower_case"]
|
|
assert model_tokenizer.tokenizer.model_max_length == 512
|
|
|
|
model = model.model.llm_engine.model_executor\
|
|
.driver_worker.model_runner.model
|
|
assert isinstance(model, BertEmbeddingModel)
|
|
assert model._pooler.pooling_type == PoolingType.CLS
|
|
assert model._pooler.normalize
|
|
# assert output
|
|
assert output
|
|
|
|
|
|
@pytest.mark.skipif(current_platform.is_rocm(),
|
|
reason="Xformers backend is not supported on ROCm.")
|
|
def test_roberta_model_loading_with_params(vllm_runner):
|
|
"""
|
|
Test parameter weight loading with tp>1.
|
|
"""
|
|
with vllm_runner(model_name=MODEL_NAME_ROBERTA,
|
|
revision=REVISION_ROBERTA,
|
|
dtype="float16",
|
|
max_model_len=MAX_MODEL_LEN) as model:
|
|
output = model.encode("Write a short story about a robot that"
|
|
" dreams for the first time.\n")
|
|
|
|
model_config = model.model.llm_engine.model_config
|
|
|
|
model_tokenizer = model.model.llm_engine.tokenizer
|
|
|
|
# asserts on the bert model config file
|
|
assert model_config.encoder_config["max_seq_length"] == 512
|
|
assert not model_config.encoder_config["do_lower_case"]
|
|
|
|
# asserts on the pooling config files
|
|
assert model_config.pooler_config.pooling_type == PoolingType.MEAN.name
|
|
assert model_config.pooler_config.pooling_norm
|
|
|
|
# asserts on the tokenizer loaded
|
|
assert model_tokenizer.tokenizer_id == "intfloat/multilingual-e5-large"
|
|
assert not model_tokenizer.tokenizer_config["do_lower_case"]
|
|
|
|
model = model.model.llm_engine.model_executor\
|
|
.driver_worker.model_runner.model
|
|
assert isinstance(model, RobertaEmbeddingModel)
|
|
assert model._pooler.pooling_type == PoolingType.MEAN
|
|
assert model._pooler.normalize
|
|
|
|
# assert output
|
|
assert output
|
|
|
|
|
|
@pytest.mark.skipif(current_platform.is_rocm(),
|
|
reason="Xformers backend is not supported on ROCm.")
|
|
def test_facebook_roberta_model_loading_with_params(vllm_runner):
|
|
"""
|
|
Test loading roberta-base model with no lm_head.
|
|
"""
|
|
model_name = "FacebookAI/roberta-base"
|
|
with vllm_runner(model_name=model_name,
|
|
dtype="float16",
|
|
max_model_len=MAX_MODEL_LEN) as model:
|
|
output = model.encode("Write a short story about a robot that"
|
|
" dreams for the first time.\n")
|
|
|
|
model_tokenizer = model.model.llm_engine.tokenizer
|
|
assert model_tokenizer.tokenizer_id == model_name
|
|
|
|
model = model.model.llm_engine.model_executor\
|
|
.driver_worker.model_runner.model
|
|
assert not hasattr(model, "lm_head")
|
|
assert isinstance(model, RobertaEmbeddingModel)
|
|
assert isinstance(model._pooler, CLSPool)
|
|
|
|
assert output
|