vllm/tests/kernels/test_activation.py
2023-08-23 07:43:21 +09:00

73 lines
2.3 KiB
Python

import torch
import torch.nn.functional as F
from transformers.activations import get_activation
from vllm import activation_ops
def ref_silu_and_mul(x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(chunks=2, dim=1)
return F.silu(x1) * x2
@torch.inference_mode()
def run_silu_and_mul(
num_tokens: int,
d: int,
dtype: torch.dtype,
) -> None:
x = torch.randn(num_tokens, 2 * d, dtype=dtype, device='cuda')
out = torch.empty(num_tokens, d, dtype=dtype, device='cuda')
activation_ops.silu_and_mul(out, x)
ref_out = ref_silu_and_mul(x)
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
def test_silu_and_mul() -> None:
for dtype in [torch.half, torch.bfloat16, torch.float]:
for num_tokens in [7, 83, 2048]:
for d in [512, 4096, 5120, 13824]:
print(f'Testing dtype={dtype}, num_tokens={num_tokens}, d={d}')
run_silu_and_mul(num_tokens, d, dtype)
@torch.inference_mode()
def run_gelu_new(
num_tokens: int,
d: int,
dtype: torch.dtype,
) -> None:
x = torch.randn(num_tokens, d, dtype=dtype, device='cuda')
out = torch.empty(num_tokens, d, dtype=dtype, device='cuda')
activation_ops.gelu_new(out, x)
ref_out = get_activation("gelu_new")(x)
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
def test_gelu_new() -> None:
for dtype in [torch.half, torch.bfloat16, torch.float]:
for num_tokens in [7, 83, 2048]:
for d in [512, 4096, 5120, 13824]:
print(f'Testing dtype={dtype}, num_tokens={num_tokens}, d={d}')
run_gelu_new(num_tokens, d, dtype)
@torch.inference_mode()
def run_gelu_fast(
num_tokens: int,
d: int,
dtype: torch.dtype,
) -> None:
x = torch.randn(num_tokens, d, dtype=dtype, device='cuda')
out = torch.empty(num_tokens, d, dtype=dtype, device='cuda')
activation_ops.gelu_fast(out, x)
ref_out = get_activation("gelu_fast")(x)
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
def test_gelu_fast() -> None:
for dtype in [torch.half, torch.bfloat16, torch.float]:
for num_tokens in [7, 83, 2048]:
for d in [512, 4096, 5120, 13824]:
print(f'Testing dtype={dtype}, num_tokens={num_tokens}, d={d}')
run_gelu_fast(num_tokens, d, dtype)