vllm/tests/worker/test_encoder_decoder_model_runner.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

649 lines
24 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import itertools
from typing import List
import pytest
import torch
from vllm.engine.arg_utils import EngineArgs
from vllm.platforms import current_platform
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.utils import make_tensor_with_pad
from vllm.worker.enc_dec_model_runner import EncoderDecoderModelRunner
BATCH_SIZES = [1, 4, 16, 64, 256]
def _create_model_runner(model: str, *args,
**kwargs) -> EncoderDecoderModelRunner:
engine_args = EngineArgs(model, *args, **kwargs)
engine_config = engine_args.create_engine_config()
model_runner = EncoderDecoderModelRunner(
vllm_config=engine_config,
is_driver_worker=True,
)
return model_runner
@pytest.mark.skipif(condition=current_platform.is_cpu(),
reason="CPU backend is currently "
"unsupported for encoder/ "
"decoder models")
def test_empty_seq_group():
"""Verify prepare prompt and decode returns empty output
for empty seq group list"""
model_runner = _create_model_runner(
"facebook/bart-base",
seed=0,
dtype="float16",
max_num_batched_tokens=100000,
max_num_seqs=100000,
enable_chunked_prefill=False,
enforce_eager=True,
)
seq_group_metadata_list: List[SequenceGroupMetadata] = []
model_input = model_runner._prepare_model_input_tensors(
seq_group_metadata_list)
(
input_tokens,
input_positions,
encoder_input_tokens,
encoder_input_positions,
attn_metadata,
return_seq_lens,
) = (
model_input.input_tokens,
model_input.input_positions,
model_input.encoder_input_tokens,
model_input.encoder_input_positions,
model_input.attn_metadata,
model_input.seq_lens,
)
assert input_tokens is None
assert input_positions is None
assert encoder_input_tokens is None
assert encoder_input_positions is None
assert attn_metadata is None
assert return_seq_lens is None
@pytest.mark.skipif(condition=current_platform.is_cpu(),
reason="CPU backend is currently "
"unsupported for encoder/ "
"decoder models")
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
def test_prepare_prompt(batch_size):
'''
Test the ability of the encoder/decoder model runner subclass to
produce prefill-phase model inputs & attention metadata.
Test behavior:
* Instantiate BART base model & enc/dec model runner
* Construct sequence-group metadata for dummy prompts
* Test that encoder attention, decoder self-attention,
and encoder/decoder cross-attention inputs are correct
Arguments:
* batch_size
* backend_name: The attention backend under test
* enforce_eager: Enforce eager mode if True (i.e. no CUDAGraph)
'''
model_runner = _create_model_runner(
"facebook/bart-base",
seed=0,
dtype="float16",
max_num_batched_tokens=100000,
max_num_seqs=100000,
enable_chunked_prefill=False,
enforce_eager=True,
)
seq_lens: List[int] = []
encoder_seq_lens: List[int] = []
seq_group_metadata_list: List[SequenceGroupMetadata] = []
block_tables = {0: [1]}
cross_block_table = [2]
for i in range(batch_size):
# make sure all tokens fit into one block
seq_len = i % (model_runner.block_size - 1) + 1
seq_lens.append(seq_len)
seq_data = SequenceData.from_seqs(range(seq_len))
encoder_seq_len = (i + 1) % (model_runner.block_size - 1) + 1
encoder_seq_lens.append(encoder_seq_len)
encoder_seq_data = SequenceData.from_seqs(range(encoder_seq_len))
seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables=block_tables,
encoder_seq_data=encoder_seq_data,
cross_block_table=cross_block_table,
)
assert seq_group_metadata.token_chunk_size == seq_data.get_len()
seq_group_metadata_list.append(seq_group_metadata)
# Build
# * Decoder model inputs
# * Decoder self-attention KV caching data structures
# * Encoder model inputs
# * Encoder/decoder cross-attention KV caching data structures
model_input = model_runner.prepare_model_input(seq_group_metadata_list)
input_tokens = model_input.input_tokens
input_positions = model_input.input_positions
attn_metadata = model_input.attn_metadata
return_seq_lens = model_input.seq_lens
slot_mapping = attn_metadata.slot_mapping
encoder_input_tokens = model_input.encoder_input_tokens
encoder_input_positions = model_input.encoder_input_positions
cross_slot_mapping = attn_metadata.cross_slot_mapping
assert return_seq_lens == seq_lens
assert len(slot_mapping) == len(input_tokens)
assert len(cross_slot_mapping) == len(encoder_input_tokens)
# Verify input metadata is correct for prompts.
# - Decoder attention metadata
device = model_runner.device
assert attn_metadata.num_prefills > 0
assert attn_metadata.num_decode_tokens == 0
assert torch.equal(attn_metadata.seq_lens_tensor,
torch.tensor(seq_lens, device=device, dtype=torch.int))
assert attn_metadata.seq_lens == seq_lens
assert attn_metadata.max_prefill_seq_len == max(seq_lens)
assert attn_metadata.max_decode_seq_len == 0
# - Encoder attention metadata
assert attn_metadata.encoder_seq_lens == encoder_seq_lens
assert torch.equal(
attn_metadata.encoder_seq_lens_tensor,
torch.tensor(encoder_seq_lens, device=device, dtype=torch.int))
assert attn_metadata.max_encoder_seq_len == max(encoder_seq_lens)
assert attn_metadata.num_encoder_tokens == sum(encoder_seq_lens)
# Test decoder subquery start locs.
start_idx = 0
start_loc = [start_idx]
for seq_len in seq_lens:
start_idx += seq_len
start_loc.append(start_idx)
assert torch.equal(
attn_metadata.query_start_loc,
torch.tensor(start_loc, dtype=torch.int32, device=device),
)
# Test decoder seq start locs & context lengths
assert torch.equal(
attn_metadata.seq_start_loc,
torch.tensor(start_loc, dtype=torch.int32, device=device),
)
assert torch.equal(
attn_metadata.context_lens_tensor,
torch.zeros(attn_metadata.context_lens_tensor.shape[0],
dtype=torch.int,
device=device),
)
# Verify block tables are correct for prompts
# - Decoder self-attention
expected = torch.tensor(
[[] for _ in range(len(seq_group_metadata_list))],
dtype=torch.int32,
device=model_runner.device,
)
assert torch.equal(
attn_metadata.block_tables,
expected,
)
# - Encoder/decoder cross-attention
assert torch.equal(
attn_metadata.cross_block_tables,
expected,
)
# Cuda graph should not be used for prefill.
assert attn_metadata.use_cuda_graph is False
# Verify the lengths of input tokens & positions
# - Decoder
assert len(input_tokens) == sum(seq_lens)
assert len(input_positions) == sum(seq_lens)
# -- An indirect check that model_input.input_tokens
# and model_input.input_positions are correct -
# by design of the test, the input tokens are
# equal to the input position values, so if
# the model_input data structure has the correct
# values then these two should be equal
assert torch.equal(
input_tokens,
input_positions,
)
# - Encoder
assert len(encoder_input_tokens) == sum(encoder_seq_lens)
# -- An indirect check that model_input.encoder_input_tokens
# and model_input.encoder_input_positions are correct -
# by design of the test, the input tokens are
# equal to the input position values, so if
# the model_input data structure has the correct
# values then these two should be equal
assert torch.equal(
encoder_input_tokens,
encoder_input_positions,
)
# Test that vLLM sampling infrastructure chooses the correct
# sequence positions at which to sample (i.e. the end of
# each sequence) in the prefill phase
expected_selected_token_indices = []
selected_token_start_idx = 0
for seq_len in seq_lens:
# Compute the index offset of the final token in each
# prompt (recall that the prompts are concatenated)
expected_selected_token_indices.append(selected_token_start_idx +
seq_len - 1)
selected_token_start_idx += seq_len
sampling_metadata = model_input.sampling_metadata
actual = sampling_metadata.selected_token_indices
expected = torch.tensor(
expected_selected_token_indices,
device=actual.device,
dtype=actual.dtype,
)
assert torch.equal(actual, expected)
@pytest.mark.skipif(condition=current_platform.is_cpu(),
reason="CPU backend is currently "
"unsupported for encoder/ "
"decoder models")
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("multiple_seqs_per_seq_group", [True, False])
def test_prepare_decode(batch_size, multiple_seqs_per_seq_group):
'''
Test the ability of the encoder/decoder model runner subclass to
produce decode-phase model inputs & attention metadata.
Test behavior:
* Instantiate BART base model & enc/dec model runner
* Construct sequence-group metadata for dummy prompts
* Test that encoder attention, decoder self-attention,
and encoder/decoder cross-attention inputs are correct
Arguments:
* batch_size
* multiple_seqs_per_seq_group
* backend_name: The attention backend under test
* enforce_eager: Enforce eager mode if True (i.e. no CUDAGraph)
'''
model_runner = _create_model_runner(
"facebook/bart-base",
seed=0,
dtype="float16",
max_num_batched_tokens=100000,
max_num_seqs=100000,
enable_chunked_prefill=False,
enforce_eager=True,
)
seq_lens: List[int] = []
encoder_seq_lens: List[int] = []
seq_group_metadata_list: List[SequenceGroupMetadata] = []
block_tables = {
0: [1],
1: [3]
} if multiple_seqs_per_seq_group else {
0: [1]
}
cross_block_table = [2]
for i in range(batch_size):
# make sure all tokens fit into one block
seq_len = i % (model_runner.block_size - 1) + 1
seq_data = SequenceData.from_seqs(range(seq_len))
encoder_seq_len = (i + 1) % (model_runner.block_size - 1) + 1
encoder_seq_data = SequenceData.from_seqs(range(encoder_seq_len))
seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=False,
seq_data={
0: seq_data,
1: seq_data
} if multiple_seqs_per_seq_group else {0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables=block_tables,
encoder_seq_data=encoder_seq_data,
cross_block_table=cross_block_table,
)
assert seq_group_metadata.token_chunk_size == 1
seq_group_metadata_list.append(seq_group_metadata)
seq_lens.extend(
[seq_len for _ in range(len(seq_group_metadata.seq_data))])
encoder_seq_lens.extend(
[encoder_seq_len for _ in range(len(seq_group_metadata.seq_data))])
# Build
# * Decoder model inputs
# * Decoder self-attention KV caching data structures
# * Encoder model inputs
# * Encoder/decoder cross-attention KV caching data structures
model_input = model_runner.prepare_model_input(seq_group_metadata_list)
input_tokens = model_input.input_tokens
input_positions = model_input.input_positions
attn_metadata = model_input.attn_metadata
return_seq_lens = model_input.seq_lens
slot_mapping = attn_metadata.slot_mapping
encoder_input_tokens = model_input.encoder_input_tokens
encoder_input_positions = model_input.encoder_input_positions
cross_slot_mapping = attn_metadata.cross_slot_mapping
assert return_seq_lens == seq_lens
assert len(slot_mapping) == len(input_tokens)
assert len(cross_slot_mapping) == len(encoder_input_tokens)
# Verify input metadata is correct for decode phase.
# - Decoder attention metadata
device = model_runner.device
assert attn_metadata.num_prefills == 0
assert attn_metadata.num_decode_tokens > 0
assert torch.equal(attn_metadata.seq_lens_tensor,
torch.tensor(seq_lens, device=device, dtype=torch.int))
assert attn_metadata.seq_lens == seq_lens
assert attn_metadata.max_prefill_seq_len == 0
assert attn_metadata.max_decode_seq_len == max(seq_lens)
# - Encoder attention metadata
assert attn_metadata.encoder_seq_lens == encoder_seq_lens
assert torch.equal(
attn_metadata.encoder_seq_lens_tensor,
torch.tensor(encoder_seq_lens, device=device, dtype=torch.int))
assert attn_metadata.max_encoder_seq_len == max(encoder_seq_lens)
assert attn_metadata.num_encoder_tokens == sum(encoder_seq_lens)
# Test decoder subquery start locs.
start_idx = 0
start_loc = [start_idx]
for seq_len in seq_lens:
start_idx += 1
start_loc.append(start_idx)
assert torch.equal(
attn_metadata.query_start_loc,
torch.tensor(start_loc, dtype=torch.int32, device=device),
)
# Test decoder seq start locs. Note that for normal prefill it is
# equivalent to query_start_loc.
start_idx = 0
seq_start_loc = [start_idx]
for seq_len in seq_lens:
start_idx += seq_len
seq_start_loc.append(start_idx)
# Test seq_start_loc and context lengths
assert torch.equal(
attn_metadata.seq_start_loc,
torch.tensor(seq_start_loc, dtype=torch.int32, device=device),
)
assert torch.equal(
attn_metadata.context_lens_tensor,
torch.tensor([seq_len - 1 for seq_len in seq_lens],
dtype=torch.int,
device=device))
# Verify block tables are correct for prompts
# - Decoder self-attention
flattened_block_tables = [
block_table for block_table in block_tables.values()
]
expected = torch.tensor(flattened_block_tables *
len(seq_group_metadata_list),
dtype=torch.int32,
device=model_runner.device)
assert torch.equal(
attn_metadata.block_tables,
expected,
)
# - Encoder/decoder cross-attention
expected = torch.tensor([
cross_block_table for seq_group_metadata in seq_group_metadata_list
for _ in range(len(seq_group_metadata.seq_data))
],
dtype=torch.int32,
device=model_runner.device)
assert torch.equal(
attn_metadata.cross_block_tables,
expected,
)
# Model runner's CUDAGraph setting should be propagated to attention
# metadata.
assert attn_metadata.use_cuda_graph is False
# Verify the lengths of input tokens & positions
# - Decoder
assert len(input_tokens) == len(seq_lens)
assert len(input_positions) == len(seq_lens)
# -- An indirect check that model_input.input_tokens
# and model_input.input_positions are correct -
# by design of the test, the input tokens are
# equal to the input position values, so if
# the model_input data structure has the correct
# values then these two should be equal
assert torch.equal(
input_tokens,
input_positions,
)
# - Encoder
assert len(encoder_input_tokens) == 0
assert len(encoder_input_tokens) == 0
# -- An indirect check that model_input.encoder_input_tokens
# and model_input.encoder_input_positions are correct -
# by design of the test, the input tokens are
# equal to the input position values, so if
# the model_input data structure has the correct
# values then these two should be equal
assert torch.equal(
encoder_input_tokens,
encoder_input_positions,
)
# Test that vLLM sampling infrastructure chooses the correct
# sequence positions at which to sample (i.e. the end of
# each sequence) in the decode phase
expected_selected_token_indices = []
for selected_token_start_idx, seq_len in enumerate(seq_lens):
# Compute the index offset of the final token in each
# sequence's decoded outputs; since a single token is
# decoded per iteration per sequence, then the length
# of the decoded tokens for a given sequence is 1 and
# the final index offset into a given sequence's
# generated tokens is 0 (i.e. the expected sampling index
# for a given sequence is just `selected_token_start_idx`)
expected_selected_token_indices.append(selected_token_start_idx)
sampling_metadata = model_input.sampling_metadata
actual = sampling_metadata.selected_token_indices
expected = torch.tensor(
expected_selected_token_indices,
device=actual.device,
dtype=actual.dtype,
)
assert torch.equal(actual, expected)
@pytest.mark.parametrize("batch_size", list(range(1, 257)))
@pytest.mark.parametrize("multiple_seqs_per_seq_group", [True, False])
def test_prepare_decode_cuda_graph(batch_size, multiple_seqs_per_seq_group):
"""
Tests that for encoder-decoder models with CUDA Graph capture and replay
enabled, the tensors used during the decode phase are correctly padded
for varying input batch sizes.
"""
model_runner = _create_model_runner(
"facebook/bart-base",
seed=0,
dtype="float16",
max_num_batched_tokens=100000,
max_num_seqs=100000,
enable_chunked_prefill=False,
enforce_eager=False,
)
block_tables = {
0: [1],
1: [3]
} if multiple_seqs_per_seq_group else {
0: [1]
}
seq_lens: List[int] = []
encoder_seq_lens: List[int] = []
seq_group_metadata_list: List[SequenceGroupMetadata] = []
cross_block_table = [2]
expanded_batch_size = 0
for i in range(batch_size):
# make sure all tokens fit into one block
seq_len = i % (model_runner.block_size - 1) + 1
seq_data = SequenceData.from_seqs(range(seq_len))
encoder_seq_len = (i + 1) % (model_runner.block_size - 1) + 1
encoder_seq_data = SequenceData.from_seqs(range(encoder_seq_len))
seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=False,
seq_data={
0: seq_data,
1: seq_data
} if multiple_seqs_per_seq_group else {0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables=block_tables,
encoder_seq_data=encoder_seq_data,
cross_block_table=cross_block_table,
)
assert seq_group_metadata.token_chunk_size == 1
seq_lens.extend(
[seq_len for _ in range(len(seq_group_metadata.seq_data))])
encoder_seq_lens.extend(
[encoder_seq_len for _ in range(len(seq_group_metadata.seq_data))])
expanded_batch_size = expanded_batch_size + len(
seq_group_metadata.seq_data)
seq_group_metadata_list.append(seq_group_metadata)
model_input = model_runner.prepare_model_input(seq_group_metadata_list)
input_tokens = model_input.input_tokens
input_positions = model_input.input_positions
attn_metadata = model_input.attn_metadata
return_seq_lens = model_input.seq_lens
slot_mapping = attn_metadata.slot_mapping
encoder_input_tokens = model_input.encoder_input_tokens
encoder_input_positions = model_input.encoder_input_positions
cross_slot_mapping = attn_metadata.cross_slot_mapping
# With CUDA Graph capture and replay enabled, the decoder and encoder
# input sequences will be padded. Create the expected padded tensors
# accordingly.
graph_batch_size = model_runner.vllm_config.pad_for_cudagraph(
expanded_batch_size)
cuda_graph_pad_size = graph_batch_size - expanded_batch_size
padded_seq_lens = seq_lens + list(itertools.repeat(1, cuda_graph_pad_size))
padded_encoder_seq_lens = encoder_seq_lens + list(
itertools.repeat(1, cuda_graph_pad_size))
assert return_seq_lens == padded_seq_lens
assert len(slot_mapping) == len(input_tokens)
assert len(cross_slot_mapping) == len(encoder_input_tokens)
# Verify attention metadata
device = model_runner.device
assert attn_metadata.num_prefills == 0
assert attn_metadata.num_decode_tokens > 0
assert torch.equal(
attn_metadata.seq_lens_tensor,
torch.tensor(padded_seq_lens, device=device, dtype=torch.int))
assert attn_metadata.seq_lens == padded_seq_lens
assert attn_metadata.max_prefill_seq_len == 0
assert attn_metadata.max_decode_seq_len == max(seq_lens)
# - Encoder attention metadata
assert attn_metadata.encoder_seq_lens == padded_encoder_seq_lens
assert torch.equal(
attn_metadata.encoder_seq_lens_tensor,
torch.tensor(padded_encoder_seq_lens, device=device, dtype=torch.int))
assert attn_metadata.max_encoder_seq_len == max(padded_encoder_seq_lens)
assert attn_metadata.num_encoder_tokens == sum(padded_encoder_seq_lens)
# Verify block tables are correct for prompts
# - Decoder self-attention. Pad the block tables as expected.
flattened_block_tables = [
block_table for _ in range(len(seq_group_metadata_list))
for block_table in block_tables.values()
]
flattened_block_tables.extend([[] for _ in range(cuda_graph_pad_size)])
expected = make_tensor_with_pad(
flattened_block_tables,
max_len=64,
pad=0,
dtype=torch.int32,
device=model_runner.device,
)
assert torch.equal(
attn_metadata.block_tables,
expected,
)
# - Encoder/decoder cross-attention. Pad the cross-attention block tables
# as expected.
expected = [
cross_block_table for seq_group_metadata in seq_group_metadata_list
for _ in range(len(seq_group_metadata.seq_data))
]
expected.extend([[] for _ in range(cuda_graph_pad_size)])
expected = make_tensor_with_pad(
expected,
max_len=64,
pad=0,
dtype=torch.int32,
device=model_runner.device,
)
assert torch.equal(
attn_metadata.cross_block_tables,
expected,
)
# Model runner's CUDAGraph setting should be propagated to attention
# metadata.
assert attn_metadata.use_cuda_graph is True
# Verify the lengths of input tokens & positions
# - Decoder
assert len(input_tokens) == len(padded_seq_lens)
assert len(input_positions) == len(padded_seq_lens)
# -- An indirect check that model_input.input_tokens
# and model_input.input_positions are correct -
# by design of the test, the input tokens are
# equal to the input position values, so if
# the model_input data structure has the correct
# values then these two should be equal
assert torch.equal(
input_tokens,
input_positions,
)
# - Encoder
assert len(encoder_input_tokens) == 0
assert len(encoder_input_tokens) == 0
# -- An indirect check that model_input.encoder_input_tokens
# and model_input.encoder_input_positions are correct -
# by design of the test, the input tokens are
# equal to the input position values, so if
# the model_input data structure has the correct
# values then these two should be equal
assert torch.equal(
encoder_input_tokens,
encoder_input_positions,
)