
Signed-off-by: <> Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
312 lines
13 KiB
Python
312 lines
13 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import json
|
|
import re
|
|
import weakref
|
|
|
|
import jsonschema
|
|
import pytest
|
|
|
|
from vllm.config import LoadFormat
|
|
from vllm.distributed import cleanup_dist_env_and_memory
|
|
from vllm.entrypoints.llm import LLM
|
|
from vllm.outputs import RequestOutput
|
|
from vllm.sampling_params import GuidedDecodingParams, SamplingParams
|
|
|
|
MODEL_NAME = "s3://vllm-ci-model-weights/Qwen2.5-1.5B-Instruct"
|
|
GUIDED_DECODING_BACKENDS = ["outlines", "lm-format-enforcer", "xgrammar"]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def llm():
|
|
# pytest caches the fixture so we use weakref.proxy to
|
|
# enable garbage collection
|
|
llm = LLM(model=MODEL_NAME,
|
|
load_format=LoadFormat.RUNAI_STREAMER,
|
|
max_model_len=1024)
|
|
|
|
with llm.deprecate_legacy_api():
|
|
yield weakref.proxy(llm)
|
|
del llm
|
|
cleanup_dist_env_and_memory()
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_regex(sample_regex, llm, guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
guided_decoding=GuidedDecodingParams(
|
|
regex=sample_regex,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
f"Give an example IPv4 address with this regex: {sample_regex}"
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
assert re.fullmatch(sample_regex, generated_text) is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_json_completion(sample_json_schema, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json=sample_json_schema,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
f"Give an example JSON for an employee profile "
|
|
f"that fits this schema: {sample_json_schema}"
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json, schema=sample_json_schema)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_complex_json_completion(sample_complex_json_schema, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json=sample_complex_json_schema,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
f"Give an example JSON for an assignment grade "
|
|
f"that fits this schema: {sample_complex_json_schema}"
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json,
|
|
schema=sample_complex_json_schema)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_definition_json_completion(sample_definition_json_schema, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json=sample_definition_json_schema,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
f"Give an example JSON for solving 8x + 7 = -23 "
|
|
f"that fits this schema: {sample_definition_json_schema}"
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json,
|
|
schema=sample_definition_json_schema)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_enum_json_completion(sample_enum_json_schema, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json=sample_enum_json_schema,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(prompts=[
|
|
"Create a bug report JSON that fits this schema: "
|
|
f"{sample_enum_json_schema}. Make it for a high priority critical bug."
|
|
] * 2,
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
output_json = json.loads(generated_text)
|
|
jsonschema.validate(instance=output_json,
|
|
schema=sample_enum_json_schema)
|
|
|
|
# Additional assertions to verify enum values
|
|
assert output_json["status"] in ["active", "inactive", "pending"]
|
|
assert output_json["priority"] in ["low", "medium", "high", "critical"]
|
|
assert output_json["category"]["type"] in [
|
|
"bug", "feature", "improvement"
|
|
]
|
|
assert output_json["category"]["severity"] in [1, 2, 3, 4, 5]
|
|
for flag in output_json["flags"]:
|
|
assert flag in ["urgent", "blocked", "needs_review", "approved"]
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_choice_completion(sample_guided_choice, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
guided_decoding=GuidedDecodingParams(
|
|
choice=sample_guided_choice,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(
|
|
prompts="The best language for type-safe systems programming is ",
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
assert generated_text in sample_guided_choice
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_grammar(sample_sql_statements, llm,
|
|
guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
max_tokens=1000,
|
|
guided_decoding=GuidedDecodingParams(
|
|
grammar=sample_sql_statements,
|
|
backend=guided_decoding_backend))
|
|
outputs = llm.generate(
|
|
prompts=("Generate a sql state that select col_1 from "
|
|
"table_1 where it is equals to 1"),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
|
assert generated_text is not None
|
|
# use Lark to parse the output, and make sure it's a valid parse tree
|
|
from lark import Lark
|
|
parser = Lark(sample_sql_statements)
|
|
parser.parse(generated_text)
|
|
|
|
# remove spaces for comparison b/c we removed them in the grammar
|
|
ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(
|
|
" ", "")
|
|
|
|
assert generated_text.strip() == ground_truth
|
|
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_guided_options_request_deprecation_warning(sample_regex, llm):
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
|
|
|
with pytest.warns(DeprecationWarning, match="guided_options_request"):
|
|
llm.generate(prompts="This should fail",
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
guided_options_request=dict(guided_regex=sample_regex))
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_validation_against_both_guided_decoding_options(sample_regex, llm):
|
|
sampling_params = SamplingParams(
|
|
temperature=0.8,
|
|
top_p=0.95,
|
|
guided_decoding=GuidedDecodingParams(regex=sample_regex))
|
|
|
|
with pytest.raises(ValueError, match="Cannot set both"):
|
|
llm.generate(prompts="This should fail",
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True,
|
|
guided_options_request=dict(guided_regex=sample_regex))
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
|
|
def test_guided_json_object(llm, guided_decoding_backend: str):
|
|
sampling_params = SamplingParams(temperature=1.0,
|
|
max_tokens=100,
|
|
n=2,
|
|
guided_decoding=GuidedDecodingParams(
|
|
json_object=True,
|
|
backend=guided_decoding_backend))
|
|
|
|
outputs = llm.generate(
|
|
prompts=("Generate a JSON object with curly braces for a person with "
|
|
"name and age fields for John Smith who is 31 years old."),
|
|
sampling_params=sampling_params,
|
|
use_tqdm=True)
|
|
|
|
assert outputs is not None
|
|
for output in outputs:
|
|
assert output is not None
|
|
assert isinstance(output, RequestOutput)
|
|
|
|
for i in range(2):
|
|
generated_text = output.outputs[i].text
|
|
print(generated_text)
|
|
assert generated_text is not None
|
|
|
|
# Parse to verify it is valid JSON
|
|
parsed_json = json.loads(generated_text)
|
|
assert isinstance(parsed_json, dict)
|