vllm/tests/basic_correctness/test_cumem.py
Kevin H. Luu d5d214ac7f
[1/n][CI] Load models in CI from S3 instead of HF (#13205)
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
2025-02-19 07:34:59 +00:00

155 lines
4.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from vllm import LLM, SamplingParams
from vllm.config import LoadFormat
from vllm.device_allocator.cumem import CuMemAllocator
from vllm.utils import GiB_bytes
from ..conftest import MODEL_WEIGHTS_S3_BUCKET
from ..utils import fork_new_process_for_each_test
@fork_new_process_for_each_test
def test_python_error():
"""
Test if Python error occurs when there's low-level
error happening from the C++ side.
"""
allocator = CuMemAllocator.get_instance()
total_bytes = torch.cuda.mem_get_info()[1]
alloc_bytes = int(total_bytes * 0.7)
tensors = []
with allocator.use_memory_pool():
# allocate 70% of the total memory
x = torch.empty(alloc_bytes, dtype=torch.uint8, device='cuda')
tensors.append(x)
# release the memory
allocator.sleep()
# allocate more memory than the total memory
y = torch.empty(alloc_bytes, dtype=torch.uint8, device='cuda')
tensors.append(y)
with pytest.raises(RuntimeError):
# when the allocator is woken up, it should raise an error
# because we don't have enough memory
allocator.wake_up()
@fork_new_process_for_each_test
def test_basic_cumem():
# some tensors from default memory pool
shape = (1024, 1024)
x = torch.empty(shape, device='cuda')
x.zero_()
# some tensors from custom memory pool
allocator = CuMemAllocator.get_instance()
with allocator.use_memory_pool():
# custom memory pool
y = torch.empty(shape, device='cuda')
y.zero_()
y += 1
z = torch.empty(shape, device='cuda')
z.zero_()
z += 2
# they can be used together
output = x + y + z
assert torch.allclose(output, torch.ones_like(output) * 3)
free_bytes = torch.cuda.mem_get_info()[0]
allocator.sleep()
free_bytes_after_sleep = torch.cuda.mem_get_info()[0]
assert free_bytes_after_sleep > free_bytes
allocator.wake_up()
# they can be used together
output = x + y + z
assert torch.allclose(output, torch.ones_like(output) * 3)
@fork_new_process_for_each_test
def test_cumem_with_cudagraph():
allocator = CuMemAllocator.get_instance()
with allocator.use_memory_pool():
weight = torch.eye(1024, device='cuda')
with allocator.use_memory_pool(tag="discard"):
cache = torch.empty(1024, 1024, device='cuda')
def model(x):
out = x @ weight
cache[:out.size(0)].copy_(out)
return out + 1
x = torch.empty(128, 1024, device='cuda')
# warmup
model(x)
# capture cudagraph
model_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(model_graph):
y = model(x)
free_bytes = torch.cuda.mem_get_info()[0]
allocator.sleep()
free_bytes_after_sleep = torch.cuda.mem_get_info()[0]
assert free_bytes_after_sleep > free_bytes
allocator.wake_up()
# after waking up, the content in the weight tensor
# should be restored, but the content in the cache tensor
# should be discarded
# this operation is also compatible with cudagraph
x.random_()
model_graph.replay()
# cache content is as expected
assert torch.allclose(x, cache[:x.size(0)])
# output content is as expected
assert torch.allclose(y, x + 1)
@fork_new_process_for_each_test
@pytest.mark.parametrize(
"model",
[
# sleep mode with safetensors
f"{MODEL_WEIGHTS_S3_BUCKET}/Llama-3.2-1B",
# sleep mode with pytorch checkpoint
"facebook/opt-125m"
])
def test_end_to_end(model):
free, total = torch.cuda.mem_get_info()
used_bytes_baseline = total - free # in case other process is running
load_format = LoadFormat.AUTO
if "Llama" in model:
load_format = LoadFormat.RUNAI_STREAMER
llm = LLM(model, load_format=load_format, enable_sleep_mode=True)
prompt = "How are you?"
sampling_params = SamplingParams(temperature=0, max_tokens=10)
output = llm.generate(prompt, sampling_params)
# the benefit of `llm.sleep(level=2)` is mainly CPU memory usage,
# which is difficult to measure in the test. therefore, we only
# test sleep level 1 here.
llm.sleep(level=1)
free_gpu_bytes_after_sleep, total = torch.cuda.mem_get_info()
used_bytes = total - free_gpu_bytes_after_sleep - used_bytes_baseline
# now the memory usage is mostly cudagraph memory pool,
# and it should be less than the model weights (1B model, 2GiB weights)
assert used_bytes < 2 * GiB_bytes
llm.wake_up()
output2 = llm.generate(prompt, sampling_params)
# cmp output
assert output[0].outputs[0].text == output2[0].outputs[0].text