vllm/vllm/v1/engine/llm_engine.py
Joe Runde d58268c56a
[V1] Make v1 more testable (#9888)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-11-06 11:57:35 -08:00

520 lines
21 KiB
Python

import time
from typing import (Any, Dict, Iterable, List, Mapping, Optional, Tuple, Type,
Union)
from vllm.config import (DecodingConfig, LoRAConfig, ModelConfig,
ObservabilityConfig, ParallelConfig, SchedulerConfig,
VllmConfig)
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.metrics_types import StatLoggerBase
from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs,
EncoderDecoderLLMInputs, InputRegistry, PromptType)
from vllm.inputs.preprocess import InputPreprocessor
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.outputs import CompletionOutput, RequestOutput
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import RequestOutputKind, SamplingParams
from vllm.transformers_utils.config import try_get_generation_config
from vllm.transformers_utils.tokenizer_group import (
BaseTokenizerGroup, init_tokenizer_from_configs)
from vllm.usage.usage_lib import UsageContext
from vllm.v1.core.scheduler import Scheduler
from vllm.v1.executor.gpu_executor import GPUExecutor
from vllm.v1.request import Request, RequestStatus
from vllm.v1.tokenizer.detokenizer import Detokenizer, DetokenizerInputs
from vllm.version import __version__ as VLLM_VERSION
logger = init_logger(__name__)
class LLMEngine:
def __init__(
self,
vllm_config: VllmConfig,
executor_class: Type[GPUExecutor],
log_stats: bool,
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
input_registry: InputRegistry = INPUT_REGISTRY,
use_cached_outputs: bool = False,
) -> None:
# TODO: remove the local variables and use self.* throughout the class.
model_config = self.model_config = vllm_config.model_config
cache_config = self.cache_config = vllm_config.cache_config
lora_config = self.lora_config = vllm_config.lora_config
parallel_config = self.parallel_config = vllm_config.parallel_config
scheduler_config = self.scheduler_config = vllm_config.scheduler_config
device_config = self.device_config = vllm_config.device_config
speculative_config = self.speculative_config = vllm_config.speculative_config # noqa
load_config = self.load_config = vllm_config.load_config
decoding_config = self.decoding_config = vllm_config.decoding_config or DecodingConfig( # noqa
)
prompt_adapter_config = self.prompt_adapter_config = vllm_config.prompt_adapter_config # noqa
observability_config = self.observability_config = vllm_config.observability_config or ObservabilityConfig( # noqa
)
# Override the configs for V1.
# FIXME
if usage_context == UsageContext.LLM_CLASS:
scheduler_config.max_num_seqs = 1024
scheduler_config.max_num_batched_tokens = 8192
elif usage_context == UsageContext.OPENAI_API_SERVER:
scheduler_config.max_num_seqs = 1024
scheduler_config.max_num_batched_tokens = 2048
logger.info(
"Initializing an LLM engine (v%s) with config: "
"model=%r, speculative_config=%r, tokenizer=%r, "
"skip_tokenizer_init=%s, tokenizer_mode=%s, revision=%s, "
"override_neuron_config=%s, "
"rope_scaling=%r, rope_theta=%r, tokenizer_revision=%s, "
"trust_remote_code=%s, dtype=%s, max_seq_len=%d, "
"download_dir=%r, load_format=%s, tensor_parallel_size=%d, "
"pipeline_parallel_size=%d, "
"disable_custom_all_reduce=%s, quantization=%s, "
"enforce_eager=%s, kv_cache_dtype=%s, "
"quantization_param_path=%s, device_config=%s, "
"decoding_config=%r, observability_config=%r, "
"seed=%d, served_model_name=%s, "
"num_scheduler_steps=%d, enable_prefix_caching=%s, "
"use_async_output_proc=%s, mm_processor_kwargs=%s)",
VLLM_VERSION,
model_config.model,
speculative_config,
model_config.tokenizer,
model_config.skip_tokenizer_init,
model_config.tokenizer_mode,
model_config.revision,
model_config.override_neuron_config,
model_config.rope_scaling,
model_config.rope_theta,
model_config.tokenizer_revision,
model_config.trust_remote_code,
model_config.dtype,
model_config.max_model_len,
load_config.download_dir,
load_config.load_format,
parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size,
parallel_config.disable_custom_all_reduce,
model_config.quantization,
model_config.enforce_eager,
cache_config.cache_dtype,
model_config.quantization_param_path,
device_config.device,
decoding_config,
observability_config,
model_config.seed,
model_config.served_model_name,
scheduler_config.num_scheduler_steps,
cache_config.enable_prefix_caching,
model_config.use_async_output_proc,
model_config.mm_processor_kwargs,
)
self.log_stats = log_stats
assert not self.model_config.skip_tokenizer_init
self.tokenizer = self._init_tokenizer()
if self.tokenizer:
# Ping the tokenizer to ensure liveness if it runs in a
# different process.
self.tokenizer.ping()
self.detokenizer = Detokenizer(self.model_config.tokenizer)
self.generation_config_fields = _load_generation_config_dict(
model_config)
self.input_preprocessor = InputPreprocessor(model_config,
self.tokenizer)
self.input_registry = input_registry
self.input_processor = input_registry.create_input_processor(
model_config)
# Request id -> Request
self.requests: Dict[str, Request] = {}
# NOTE(woosuk): Now that the detokenizer works asynchronously, we need
# to keep track of how many steps each request has been lagged behind
# in terms of detokenization.
# Request id -> how many detokenizer steps the request should wait for.
self.num_lagged_steps: Dict[str, int] = {}
# OPTIMIZATION: Cache the request output and update it incrementally.
# This is used to avoid creating a new RequestOutput object every step.
# Request id -> RequestOutput
self.request_outputs: Dict[str, RequestOutput] = {}
self.model_executor = executor_class(vllm_config=vllm_config)
assert self.model_config.task != "embedding"
self._initialize_kv_caches()
# Create the scheduler.
# NOTE: the cache_config here have been updated with the numbers of
# GPU and CPU blocks, which are profiled in the distributed executor.
self.scheduler = Scheduler(scheduler_config, cache_config, lora_config)
def __del__(self):
# Small hack- implicit clean up of resources on garbage collect
# TODO: this should probably be explicitly invoked when we're done with
# the engine
self.terminate_detokenizer()
def _initialize_kv_caches(self) -> None:
num_gpu_blocks, _ = self.model_executor.determine_num_available_blocks(
)
if self.cache_config.num_gpu_blocks_override is not None:
num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override
logger.info(
"Overriding num_gpu_blocks=%d with "
"num_gpu_blocks_override=%d", num_gpu_blocks,
num_gpu_blocks_override)
num_gpu_blocks = num_gpu_blocks_override
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = 0
self.model_executor.initialize_cache(num_gpu_blocks)
@classmethod
def from_engine_args(
cls,
engine_args: EngineArgs,
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
) -> "LLMEngine":
"""Creates an LLM engine from the engine arguments."""
# Create the engine configs.
engine_config = engine_args.create_engine_config()
executor_class = cls._get_executor_cls(engine_config)
# Create the LLM engine.
engine = cls(
vllm_config=engine_config,
executor_class=executor_class,
log_stats=not engine_args.disable_log_stats,
usage_context=usage_context,
stat_loggers=stat_loggers,
)
return engine
def _init_tokenizer(self) -> BaseTokenizerGroup:
return init_tokenizer_from_configs(
model_config=self.model_config,
scheduler_config=self.scheduler_config,
parallel_config=self.parallel_config,
enable_lora=bool(self.lora_config))
def _verify_args(self) -> None:
self.model_config.verify_with_parallel_config(self.parallel_config)
self.cache_config.verify_with_parallel_config(self.parallel_config)
if self.lora_config:
self.lora_config.verify_with_model_config(self.model_config)
self.lora_config.verify_with_scheduler_config(
self.scheduler_config)
if self.prompt_adapter_config:
self.prompt_adapter_config.verify_with_model_config(
self.model_config)
def _add_processed_request(
self,
request_id: str,
processed_inputs: Union[DecoderOnlyInputs, EncoderDecoderLLMInputs],
params: Union[SamplingParams, PoolingParams],
arrival_time: float,
lora_request: Optional[LoRARequest],
prompt_adapter_request: Optional[PromptAdapterRequest],
trace_headers: Optional[Mapping[str, str]] = None,
) -> None:
assert prompt_adapter_request is None
assert trace_headers is None
self._validate_model_inputs(processed_inputs)
eos_token_id = self.input_preprocessor.get_eos_token_id(lora_request)
# TODO(woosuk): Support embedding mode.
assert isinstance(params, SamplingParams)
sampling_params = params.clone()
sampling_params.update_from_generation_config(
self.generation_config_fields, eos_token_id)
# TODO(woosuk): Check max_logprobs
# TODO(woosuk): Support encoder-decoder models.
req = Request(request_id, processed_inputs, params, eos_token_id,
arrival_time)
self.requests[request_id] = req
self.num_lagged_steps[request_id] = 0
self.scheduler.add_request(req)
def stop_remote_worker_execution_loop(self) -> None:
raise NotImplementedError("TP not implemented yet.")
def add_request(
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> None:
if lora_request is not None and not self.lora_config:
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
"not enabled!")
if arrival_time is None:
arrival_time = time.time()
assert priority == 0, "vLLM V1 does not support priority at the moment."
preprocessed_inputs = self.input_preprocessor.preprocess(
prompt,
request_id=request_id,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request,
)
processed_inputs = self.input_processor(preprocessed_inputs)
self._add_processed_request(
request_id=request_id,
processed_inputs=processed_inputs,
params=params,
arrival_time=arrival_time,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request,
trace_headers=trace_headers,
)
def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
self.scheduler.finish_requests(request_id,
RequestStatus.FINISHED_ABORTED)
self._free_request(request_id)
def get_num_unfinished_requests(self) -> int:
"""Gets the number of unfinished requests."""
return len(self.requests)
def has_unfinished_requests(self) -> bool:
"""Returns True if there are unfinished requests."""
return len(self.requests) > 0
def step(self) -> List[RequestOutput]:
# NOTE(woosuk): This method may return an empty list when the
# detokenizer is still processing the outputs. This should not be
# considered as the end of the generation process.
# FIXME(woosuk): Currently, the step method is inefficient because it
# creates RequestOutput objects for all running requests, while they
# may not be needed unless the output is streamed to the client.
if self.scheduler.has_unfinished_requests():
scheduler_output = self.scheduler.schedule()
output = self.model_executor.execute_model(scheduler_output)
sampled = self.scheduler.update_from_output(
scheduler_output, output)
self.send_to_detokenizer(sampled)
req_outputs = self.recv_from_detokenizer()
return req_outputs
def send_to_detokenizer(self, sampled: List[Tuple[Request, int]]) -> None:
inputs = DetokenizerInputs(
req_ids=[],
prompt_token_ids=[],
new_token_ids=[],
skip_special_tokens=[],
spaces_between_special_tokens=[],
free_req_ids=[], # TODO(woosuk): Implement freeing.
)
for req, num_tokens in sampled:
inputs.req_ids.append(req.request_id)
if len(req.output_token_ids) == num_tokens:
# The request is first detokenized.
inputs.prompt_token_ids.append(req.prompt_token_ids)
else:
# The prompt token ids are already cached in the detokenizer.
inputs.prompt_token_ids.append([])
inputs.new_token_ids.append(req.output_token_ids[-num_tokens:])
inputs.skip_special_tokens.append(
req.sampling_params.skip_special_tokens)
inputs.spaces_between_special_tokens.append(
req.sampling_params.spaces_between_special_tokens)
# Update the number of lagged steps.
self.num_lagged_steps[req.request_id] += 1
self.detokenizer.send(inputs)
def recv_from_detokenizer(self) -> List[RequestOutput]:
detokenizer_output = self.detokenizer.recv()
if detokenizer_output is None:
return []
req_outputs: List[RequestOutput] = []
num_reqs = len(detokenizer_output.req_ids)
for i in range(num_reqs):
req_id = detokenizer_output.req_ids[i]
if req_id not in self.requests:
# The request has been aborted while the detokenizer was
# processing the outputs.
continue
req = self.requests[req_id]
req.output_text += detokenizer_output.detokenized_texts[i]
self.num_lagged_steps[req_id] -= 1
finished = (self.num_lagged_steps[req_id] == 0
and req.is_finished())
req_output = self._make_request_output(
req, detokenizer_output.num_output_token_ids[i],
detokenizer_output.detokenized_texts[i], finished)
req_outputs.append(req_output)
if finished:
self._free_request(req_id)
return req_outputs
def terminate_detokenizer(self) -> None:
self.detokenizer.terminate()
def _make_request_output(
self,
request: Request,
num_output_tokens: int,
new_output_text: str,
finished: bool,
) -> RequestOutput:
req_output = self.request_outputs.get(request.request_id)
if req_output is None:
# TODO: Support `n` > 1.
completion_output = CompletionOutput(
index=0,
text="",
token_ids=[],
cumulative_logprob=None,
logprobs=None, # TODO
finish_reason=None,
stop_reason=None,
lora_request=None,
)
req_output = RequestOutput(
request_id=request.request_id,
prompt=request.prompt,
prompt_token_ids=request.prompt_token_ids,
prompt_logprobs=None, # TODO
outputs=[completion_output],
finished=False,
metrics=None,
lora_request=None,
encoder_prompt=None,
encoder_prompt_token_ids=None,
)
self.request_outputs[request.request_id] = req_output
completion_output = req_output.outputs[0]
if request.sampling_params.output_kind == RequestOutputKind.CUMULATIVE:
completion_output.text += new_output_text
completion_output.token_ids = (
request.output_token_ids[:num_output_tokens])
elif request.sampling_params.output_kind == RequestOutputKind.DELTA:
completion_output.text = new_output_text
num_prev_tokens = len(completion_output.token_ids)
completion_output.token_ids = request.output_token_ids[
num_prev_tokens:num_output_tokens]
elif (request.sampling_params.output_kind ==
RequestOutputKind.FINAL_ONLY):
if finished:
completion_output.text = request.output_text
completion_output.token_ids = request.output_token_ids
else:
completion_output.text = ""
completion_output.token_ids = []
if finished:
completion_output.finish_reason = request.get_finished_reason()
completion_output.stop_reason = request.stop_reason
req_output.finished = finished
return req_output
def _free_request(self, request_id: str) -> None:
self.requests.pop(request_id, None)
self.num_lagged_steps.pop(request_id, None)
self.request_outputs.pop(request_id, None)
def check_health(self) -> None:
if self.tokenizer:
self.tokenizer.check_health()
self.model_executor.check_health()
def _validate_model_inputs(self, inputs: Union[DecoderOnlyInputs,
EncoderDecoderLLMInputs]):
prompt_ids = inputs.get("prompt_token_ids")
if prompt_ids is None or len(prompt_ids) == 0:
raise ValueError("Prompt cannot be empty")
if self.model_config.is_multimodal_model:
max_prompt_len = self.model_config.max_model_len
if len(prompt_ids) > max_prompt_len:
raise ValueError(
f"The prompt (total length {len(prompt_ids)}) is too long "
f"to fit into the model (context length {max_prompt_len}). "
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens plus multimodal tokens. For image "
"inputs, the number of image tokens depends on the number "
"of images, and possibly their aspect ratios as well.")
@classmethod
def validate_outputs(cls, outputs, output_type):
return outputs
def get_model_config(self) -> ModelConfig:
"""Gets the model configuration."""
return self.model_config
def get_parallel_config(self) -> ParallelConfig:
"""Gets the parallel configuration."""
return self.parallel_config
def get_decoding_config(self) -> DecodingConfig:
"""Gets the decoding configuration."""
return self.decoding_config
def get_scheduler_config(self) -> SchedulerConfig:
"""Gets the scheduler configuration."""
return self.scheduler_config
def get_lora_config(self) -> LoRAConfig:
"""Gets the LoRA configuration."""
return self.lora_config
@classmethod
def _get_executor_cls(cls, engine_config: VllmConfig):
return GPUExecutor
def is_tracing_enabled(self) -> bool:
return False
def do_log_stats(self, *args, **kwargs) -> None:
pass
def is_encoder_decoder_model(self) -> bool:
return False
def start_profile(self) -> None:
pass
def stop_profile(self) -> None:
pass
def get_tokenizer_group(self, *args, **kwargs):
return self.tokenizer
def _load_generation_config_dict(model_config: ModelConfig) -> Dict[str, Any]:
config = try_get_generation_config(
model_config.model,
trust_remote_code=model_config.trust_remote_code,
revision=model_config.revision,
)
if config is None:
return {}
return config.to_diff_dict()