vllm/tests/tracing/test_tracing.py
Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

216 lines
8.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import os
import threading
from collections.abc import Iterable
from concurrent import futures
from typing import Callable, Literal
import grpc
import pytest
from opentelemetry.proto.collector.trace.v1.trace_service_pb2 import (
ExportTraceServiceResponse)
from opentelemetry.proto.collector.trace.v1.trace_service_pb2_grpc import (
TraceServiceServicer, add_TraceServiceServicer_to_server)
from opentelemetry.proto.common.v1.common_pb2 import AnyValue, KeyValue
from opentelemetry.sdk.environment_variables import (
OTEL_EXPORTER_OTLP_TRACES_INSECURE)
from vllm import LLM, SamplingParams
from vllm.tracing import SpanAttributes
@pytest.fixture(scope="function", autouse=True)
def use_v0_only(monkeypatch):
"""
Since this module is V0 only, set VLLM_USE_V1=0 for
all tests in the module.
"""
monkeypatch.setenv('VLLM_USE_V1', '0')
FAKE_TRACE_SERVER_ADDRESS = "localhost:4317"
FieldName = Literal['bool_value', 'string_value', 'int_value', 'double_value',
'array_value']
def decode_value(value: AnyValue):
field_decoders: dict[FieldName, Callable] = {
"bool_value": (lambda v: v.bool_value),
"string_value": (lambda v: v.string_value),
"int_value": (lambda v: v.int_value),
"double_value": (lambda v: v.double_value),
"array_value":
(lambda v: [decode_value(item) for item in v.array_value.values]),
}
for field, decoder in field_decoders.items():
if value.HasField(field):
return decoder(value)
raise ValueError(f"Couldn't decode value: {value}")
def decode_attributes(attributes: Iterable[KeyValue]):
return {kv.key: decode_value(kv.value) for kv in attributes}
class FakeTraceService(TraceServiceServicer):
def __init__(self):
self.request = None
self.evt = threading.Event()
def Export(self, request, context):
self.request = request
self.evt.set()
return ExportTraceServiceResponse()
@pytest.fixture
def trace_service():
"""Fixture to set up a fake gRPC trace service"""
server = grpc.server(futures.ThreadPoolExecutor(max_workers=1))
service = FakeTraceService()
add_TraceServiceServicer_to_server(service, server)
server.add_insecure_port(FAKE_TRACE_SERVER_ADDRESS)
server.start()
yield service
server.stop(None)
def test_traces(trace_service):
os.environ[OTEL_EXPORTER_OTLP_TRACES_INSECURE] = "true"
sampling_params = SamplingParams(temperature=0.01,
top_p=0.1,
max_tokens=256)
model = "facebook/opt-125m"
llm = LLM(
model=model,
otlp_traces_endpoint=FAKE_TRACE_SERVER_ADDRESS,
)
prompts = ["This is a short prompt"]
outputs = llm.generate(prompts, sampling_params=sampling_params)
timeout = 5
if not trace_service.evt.wait(timeout):
raise TimeoutError(
f"The fake trace service didn't receive a trace within "
f"the {timeout} seconds timeout")
request = trace_service.request
assert len(request.resource_spans) == 1, (
f"Expected 1 resource span, "
f"but got {len(request.resource_spans)}")
assert len(request.resource_spans[0].scope_spans) == 1, (
f"Expected 1 scope span, "
f"but got {len(request.resource_spans[0].scope_spans)}")
assert len(request.resource_spans[0].scope_spans[0].spans) == 1, (
f"Expected 1 span, "
f"but got {len(request.resource_spans[0].scope_spans[0].spans)}")
attributes = decode_attributes(
request.resource_spans[0].scope_spans[0].spans[0].attributes)
assert attributes.get(SpanAttributes.GEN_AI_RESPONSE_MODEL) == model
assert attributes.get(
SpanAttributes.GEN_AI_REQUEST_ID) == outputs[0].request_id
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_TEMPERATURE
) == sampling_params.temperature
assert attributes.get(
SpanAttributes.GEN_AI_REQUEST_TOP_P) == sampling_params.top_p
assert attributes.get(
SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS) == sampling_params.max_tokens
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n
assert attributes.get(SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len(
outputs[0].prompt_token_ids)
completion_tokens = sum(len(o.token_ids) for o in outputs[0].outputs)
assert attributes.get(
SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS) == completion_tokens
metrics = outputs[0].metrics
assert attributes.get(
SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE) == metrics.time_in_queue
ttft = metrics.first_token_time - metrics.arrival_time
assert attributes.get(
SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN) == ttft
e2e_time = metrics.finished_time - metrics.arrival_time
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_E2E) == e2e_time
assert metrics.scheduler_time > 0
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_SCHEDULER
) == metrics.scheduler_time
# Model forward and model execute should be none, since detailed traces is
# not enabled.
assert metrics.model_forward_time is None
assert metrics.model_execute_time is None
def test_traces_with_detailed_steps(trace_service):
os.environ[OTEL_EXPORTER_OTLP_TRACES_INSECURE] = "true"
sampling_params = SamplingParams(temperature=0.01,
top_p=0.1,
max_tokens=256)
model = "facebook/opt-125m"
llm = LLM(
model=model,
otlp_traces_endpoint=FAKE_TRACE_SERVER_ADDRESS,
collect_detailed_traces="all",
)
prompts = ["This is a short prompt"]
outputs = llm.generate(prompts, sampling_params=sampling_params)
timeout = 5
if not trace_service.evt.wait(timeout):
raise TimeoutError(
f"The fake trace service didn't receive a trace within "
f"the {timeout} seconds timeout")
request = trace_service.request
assert len(request.resource_spans) == 1, (
f"Expected 1 resource span, "
f"but got {len(request.resource_spans)}")
assert len(request.resource_spans[0].scope_spans) == 1, (
f"Expected 1 scope span, "
f"but got {len(request.resource_spans[0].scope_spans)}")
assert len(request.resource_spans[0].scope_spans[0].spans) == 1, (
f"Expected 1 span, "
f"but got {len(request.resource_spans[0].scope_spans[0].spans)}")
attributes = decode_attributes(
request.resource_spans[0].scope_spans[0].spans[0].attributes)
assert attributes.get(SpanAttributes.GEN_AI_RESPONSE_MODEL) == model
assert attributes.get(
SpanAttributes.GEN_AI_REQUEST_ID) == outputs[0].request_id
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_TEMPERATURE
) == sampling_params.temperature
assert attributes.get(
SpanAttributes.GEN_AI_REQUEST_TOP_P) == sampling_params.top_p
assert attributes.get(
SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS) == sampling_params.max_tokens
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n
assert attributes.get(SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len(
outputs[0].prompt_token_ids)
completion_tokens = sum(len(o.token_ids) for o in outputs[0].outputs)
assert attributes.get(
SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS) == completion_tokens
metrics = outputs[0].metrics
assert attributes.get(
SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE) == metrics.time_in_queue
ttft = metrics.first_token_time - metrics.arrival_time
assert attributes.get(
SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN) == ttft
e2e_time = metrics.finished_time - metrics.arrival_time
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_E2E) == e2e_time
assert metrics.scheduler_time > 0
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_SCHEDULER
) == metrics.scheduler_time
assert metrics.model_forward_time > 0
assert attributes.get(
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_FORWARD) == pytest.approx(
metrics.model_forward_time / 1000)
assert metrics.model_execute_time > 0
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_EXECUTE
) == metrics.model_execute_time
assert metrics.model_forward_time < 1000 * metrics.model_execute_time