
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com> Co-authored-by: Michael Goin <michael@neuralmagic.com>
53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Compare the classification outputs of HF and vLLM models.
|
|
|
|
Run `pytest tests/models/test_cls_models.py`.
|
|
"""
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoModelForSequenceClassification
|
|
|
|
from vllm.platforms import current_platform
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
pytest.param("jason9693/Qwen2.5-1.5B-apeach",
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("dtype",
|
|
["half"] if current_platform.is_rocm() else ["float"])
|
|
def test_classification_models(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
monkeypatch,
|
|
) -> None:
|
|
if current_platform.is_rocm():
|
|
# ROCm Triton FA does not currently support sliding window attention
|
|
# switch to use ROCm CK FA backend
|
|
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
|
|
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
vllm_outputs = vllm_model.classify(example_prompts)
|
|
|
|
with hf_runner(model,
|
|
dtype=dtype,
|
|
auto_cls=AutoModelForSequenceClassification) as hf_model:
|
|
hf_outputs = hf_model.classify(example_prompts)
|
|
|
|
# check logits difference
|
|
for hf_output, vllm_output in zip(hf_outputs, vllm_outputs):
|
|
hf_output = torch.tensor(hf_output)
|
|
vllm_output = torch.tensor(vllm_output)
|
|
|
|
# the tolerance value of 1e-2 is selected based on the
|
|
# half datatype tests in
|
|
# tests/models/embedding/language/test_embedding.py
|
|
assert torch.allclose(hf_output, vllm_output,
|
|
1e-3 if dtype == "float" else 1e-2)
|