
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com> Co-authored-by: Michael Goin <michael@neuralmagic.com>
836 lines
34 KiB
Python
836 lines
34 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
||
"""Common tests for testing .generate() functionality for single / multiple
|
||
image, embedding, and video support for different VLMs in vLLM.
|
||
"""
|
||
import math
|
||
import os
|
||
from collections import defaultdict
|
||
from pathlib import PosixPath
|
||
|
||
import pytest
|
||
from packaging.version import Version
|
||
from transformers import AutoModelForPreTraining, AutoModelForVision2Seq
|
||
from transformers import __version__ as TRANSFORMERS_VERSION
|
||
|
||
from vllm.platforms import current_platform
|
||
from vllm.utils import identity
|
||
|
||
from ....conftest import (IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets,
|
||
_VideoAssets)
|
||
from ....utils import (fork_new_process_for_each_test, large_gpu_mark,
|
||
multi_gpu_marks)
|
||
from ...utils import check_outputs_equal
|
||
from .vlm_utils import custom_inputs, model_utils, runners
|
||
from .vlm_utils.case_filtering import get_parametrized_options
|
||
from .vlm_utils.types import (CustomTestOptions, ExpandableVLMTestArgs,
|
||
VLMTestInfo, VLMTestType)
|
||
|
||
# This hack is needed for phi3v & paligemma models
|
||
# ROCm Triton FA can run into shared memory issues with these models,
|
||
# use other backends in the meantime
|
||
# FIXME (mattwong, gshtrasb, hongxiayan)
|
||
if current_platform.is_rocm():
|
||
os.environ["VLLM_USE_TRITON_FLASH_ATTN"] = "0"
|
||
|
||
REQUIRES_V0_MODELS = [
|
||
# V1 Test: no way to fall back for head_dim = 80
|
||
# https://github.com/vllm-project/vllm/issues/14524
|
||
"qwen_vl",
|
||
"h2ovl",
|
||
"blip2",
|
||
# V1 Test: not enough KV cache space in C1.
|
||
"fuyu",
|
||
]
|
||
|
||
# yapf: disable
|
||
COMMON_BROADCAST_SETTINGS = {
|
||
"test_type": VLMTestType.IMAGE,
|
||
"dtype": "half",
|
||
"max_tokens": 5,
|
||
"tensor_parallel_size": 2,
|
||
"hf_model_kwargs": {"device_map": "auto"},
|
||
"image_size_factors": [(.25, 0.5, 1.0)],
|
||
"distributed_executor_backend": (
|
||
"ray",
|
||
"mp",
|
||
)
|
||
}
|
||
|
||
### Test configuration for specific models
|
||
# NOTE: The convention of the test settings below is to lead each test key
|
||
# with the name of the model arch used in the test, using underscores in place
|
||
# of hyphens; this makes it more convenient to filter tests for a specific kind
|
||
# of model. For example....
|
||
#
|
||
# To run all test types for a specific key:
|
||
# use the k flag to substring match with a leading square bracket; if the
|
||
# model arch happens to be a substring of another one, you can add a
|
||
# trailing hyphen. E.g.,
|
||
# - pytest $TEST_FILE -k "[llava-"
|
||
# prevents matching on "[llava_next-" & will match just the enabled cases
|
||
# for llava, i.e., single image, image embedding, and custom input tests.
|
||
#
|
||
# To run a test for a Test Info for just one of multiple models:
|
||
# use the k flag to substring match the model name, e.g.,
|
||
# - pytest $TEST_FILE -k OpenGVLab/InternVL2-1B
|
||
# prevents matching on nGVLab/InternVL2-2B.
|
||
#
|
||
# You can also combine substrings to match more granularly.
|
||
# ex 1:
|
||
# pytest $TEST_FILE -k "test_single_image and OpenGVLab/InternVL2-1B"
|
||
# will run only test_single_image* for OpenGVLab/InternVL2-1B; this would
|
||
# match both wrappers for single image tests, since it also matches
|
||
# test_single_image_heavy (which forks if we have a distributed backend)
|
||
# ex 2:
|
||
# pytest $TEST_FILE -k "[llava- or [intern_vl-"
|
||
# will run all of the tests for only llava & internvl.
|
||
#
|
||
# NOTE you can add --collect-only to any of the above commands to see
|
||
# which cases would be selected and deselected by pytest. In general,
|
||
# this is a good idea for checking your command first, since tests are slow.
|
||
|
||
VLM_TEST_SETTINGS = {
|
||
#### Core tests to always run in the CI
|
||
"llava": VLMTestInfo(
|
||
models=["llava-hf/llava-1.5-7b-hf"],
|
||
test_type=(
|
||
VLMTestType.EMBEDDING,
|
||
VLMTestType.IMAGE,
|
||
VLMTestType.CUSTOM_INPUTS
|
||
),
|
||
prompt_formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:",
|
||
convert_assets_to_embeddings=model_utils.get_llava_embeddings,
|
||
max_model_len=4096,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.llava_image_vllm_to_hf_output,
|
||
custom_test_opts=[CustomTestOptions(
|
||
inputs=custom_inputs.multi_image_multi_aspect_ratio_inputs(
|
||
formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:"
|
||
),
|
||
limit_mm_per_prompt={"image": 4},
|
||
)],
|
||
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
||
),
|
||
"paligemma": VLMTestInfo(
|
||
models=["google/paligemma-3b-mix-224"],
|
||
test_type=VLMTestType.IMAGE,
|
||
prompt_formatter=identity,
|
||
img_idx_to_prompt = lambda idx: "",
|
||
# Paligemma uses its own sample prompts because the default one fails
|
||
single_image_prompts=IMAGE_ASSETS.prompts({
|
||
"stop_sign": "caption es",
|
||
"cherry_blossom": "What is in the picture?",
|
||
}),
|
||
auto_cls=AutoModelForVision2Seq,
|
||
postprocess_inputs=model_utils.cast_dtype_post_processor(
|
||
"pixel_values"
|
||
),
|
||
vllm_output_post_proc=model_utils.paligemma_vllm_to_hf_output,
|
||
dtype="bfloat16",
|
||
marks=[pytest.mark.skip(reason="vLLM does not support PrefixLM attention mask")], # noqa: E501
|
||
),
|
||
# TODO(ywang96): Move Qwen2-VL out of core models in favor of Qwen2.5-VL
|
||
# once we upgraded to transformers>=4.49.0.
|
||
"qwen2_vl": VLMTestInfo(
|
||
models=["Qwen/Qwen2-VL-2B-Instruct"],
|
||
test_type=(
|
||
VLMTestType.IMAGE,
|
||
VLMTestType.MULTI_IMAGE,
|
||
VLMTestType.VIDEO
|
||
),
|
||
prompt_formatter=lambda img_prompt: f"<|im_start|>User\n{img_prompt}<|im_end|>\n<|im_start|>assistant\n", # noqa: E501
|
||
img_idx_to_prompt=lambda idx: "<|vision_start|><|image_pad|><|vision_end|>", # noqa: E501
|
||
video_idx_to_prompt=lambda idx: "<|vision_start|><|video_pad|><|vision_end|>", # noqa: E501
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.qwen2_vllm_to_hf_output,
|
||
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
|
||
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
||
),
|
||
"qwen2_5_vl": VLMTestInfo(
|
||
models=["Qwen/Qwen2.5-VL-3B-Instruct"],
|
||
test_type=(
|
||
VLMTestType.IMAGE,
|
||
VLMTestType.MULTI_IMAGE,
|
||
VLMTestType.VIDEO
|
||
),
|
||
prompt_formatter=lambda img_prompt: f"<|im_start|>User\n{img_prompt}<|im_end|>\n<|im_start|>assistant\n", # noqa: E501
|
||
img_idx_to_prompt=lambda idx: "<|vision_start|><|image_pad|><|vision_end|>", # noqa: E501
|
||
video_idx_to_prompt=lambda idx: "<|vision_start|><|video_pad|><|vision_end|>", # noqa: E501
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.qwen2_vllm_to_hf_output,
|
||
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
|
||
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
||
),
|
||
#### Extended model tests
|
||
# "aria": VLMTestInfo(
|
||
# models=["rhymes-ai/Aria"],
|
||
# test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
# prompt_formatter=lambda img_prompt: f"<|im_start|>user\n{img_prompt}<|im_end|>\n<|im_start|>assistant\n ", # noqa: E501
|
||
# img_idx_to_prompt=lambda idx: "<fim_prefix><|img|><fim_suffix>\n",
|
||
# max_model_len=4096,
|
||
# max_num_seqs=2,
|
||
# auto_cls=AutoModelForImageTextToText,
|
||
# single_image_prompts=IMAGE_ASSETS.prompts({
|
||
# "stop_sign": "<vlm_image>Please describe the image shortly.",
|
||
# "cherry_blossom": "<vlm_image>Please infer the season with reason.", # noqa: E501
|
||
# }),
|
||
# multi_image_prompt="<vlm_image><vlm_image>Describe the two images shortly.", # noqa: E501
|
||
# postprocess_inputs=model_utils.cast_dtype_post_processor("pixel_values"), # noqa: E501
|
||
# stop_str=["<|im_end|>"],
|
||
# image_size_factors=[(0.10, 0.15)],
|
||
# max_tokens=64,
|
||
# marks=[large_gpu_mark(min_gb=64)],
|
||
# ),
|
||
"blip2": VLMTestInfo(
|
||
models=["Salesforce/blip2-opt-2.7b"],
|
||
test_type=VLMTestType.IMAGE,
|
||
prompt_formatter=lambda img_prompt: f"Question: {img_prompt} Answer:",
|
||
img_idx_to_prompt=lambda idx: "",
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.blip2_vllm_to_hf_output,
|
||
),
|
||
"chameleon": VLMTestInfo(
|
||
models=["facebook/chameleon-7b"],
|
||
test_type=VLMTestType.IMAGE,
|
||
prompt_formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:",
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
postprocess_inputs=model_utils.cast_dtype_post_processor(
|
||
"pixel_values"
|
||
),
|
||
# For chameleon, we only compare the sequences
|
||
vllm_output_post_proc = lambda vllm_output, model: vllm_output[:2],
|
||
hf_output_post_proc = lambda hf_output, model: hf_output[:2],
|
||
comparator=check_outputs_equal,
|
||
max_tokens=8,
|
||
dtype="bfloat16",
|
||
),
|
||
"deepseek_vl_v2": VLMTestInfo(
|
||
models=["Isotr0py/deepseek-vl2-tiny"], # model repo using dynamic module
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt: f"<|User|>: {img_prompt}\n\n<|Assistant|>: ", # noqa: E501
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
single_image_prompts=IMAGE_ASSETS.prompts({
|
||
"stop_sign": "<image>\nWhat's the content in the center of the image?", # noqa: E501
|
||
"cherry_blossom": "<image>\nPlease infer the season with reason in details.", # noqa: E501
|
||
}),
|
||
multi_image_prompt="image_1:<image>\nimage_2:<image>\nWhich image can we see the car and the tower?", # noqa: E501
|
||
patch_hf_runner=model_utils.deepseekvl2_patch_hf_runner,
|
||
postprocess_inputs=model_utils.cast_dtype_post_processor("images"),
|
||
hf_output_post_proc=model_utils.deepseekvl2_trunc_hf_output,
|
||
stop_str=["<|end▁of▁sentence|>", "<|begin▁of▁sentence|>"], # noqa: E501
|
||
image_size_factors=[(), (1.0, ), (1.0, 1.0, 1.0), (0.1, 0.5, 1.0)],
|
||
marks=[
|
||
pytest.mark.skipif(
|
||
Version(TRANSFORMERS_VERSION) >= Version("4.48"),
|
||
reason="HF model is not compatible with transformers>=4.48",
|
||
)
|
||
],
|
||
),
|
||
"fuyu": VLMTestInfo(
|
||
models=["adept/fuyu-8b"],
|
||
test_type=VLMTestType.IMAGE,
|
||
prompt_formatter=lambda img_prompt: f"{img_prompt}\n",
|
||
img_idx_to_prompt=lambda idx: "",
|
||
max_model_len=2048,
|
||
max_num_seqs=2,
|
||
use_tokenizer_eos=True,
|
||
vllm_output_post_proc=model_utils.fuyu_vllm_to_hf_output,
|
||
num_logprobs=10,
|
||
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
|
||
),
|
||
"gemma3": VLMTestInfo(
|
||
models=["google/gemma-3-4b-it"],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt: f"<bos><start_of_turn>user\n{img_prompt}<end_of_turn>\n<start_of_turn>model\n", # noqa: E501
|
||
single_image_prompts=IMAGE_ASSETS.prompts({
|
||
"stop_sign": "<start_of_image>What's the content in the center of the image?", # noqa: E501
|
||
"cherry_blossom": "<start_of_image>What is the season?", # noqa: E501
|
||
}),
|
||
multi_image_prompt="<start_of_image><start_of_image>Describe the two images in detail.", # noqa: E501
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
# TODO: Use AutoModelForVision2Seq once transformers supports this
|
||
auto_cls=AutoModelForPreTraining,
|
||
dtype="bfloat16",
|
||
vllm_runner_kwargs={"mm_processor_kwargs": {"do_pan_and_scan": True}},
|
||
patch_hf_runner=model_utils.gemma3_patch_hf_runner,
|
||
),
|
||
"glm4v": VLMTestInfo(
|
||
models=["THUDM/glm-4v-9b"],
|
||
test_type=VLMTestType.IMAGE,
|
||
prompt_formatter=lambda img_prompt: f"<|user|>\n{img_prompt}<|assistant|>", # noqa: E501
|
||
single_image_prompts=IMAGE_ASSETS.prompts({
|
||
"stop_sign": "<|begin_of_image|><|endoftext|><|end_of_image|>What's the content in the center of the image?", # noqa: E501
|
||
"cherry_blossom": "<|begin_of_image|><|endoftext|><|end_of_image|>What is the season?", # noqa: E501
|
||
}),
|
||
max_model_len=2048,
|
||
max_num_seqs=2,
|
||
dtype="bfloat16",
|
||
get_stop_token_ids=lambda tok: [151329, 151336, 151338],
|
||
patch_hf_runner=model_utils.glm4v_patch_hf_runner,
|
||
# The image embeddings match with HF but the outputs of the language
|
||
# decoder are only consistent up to 2 decimal places.
|
||
# So, we need to reduce the number of tokens for the test to pass.
|
||
max_tokens=8,
|
||
num_logprobs=10,
|
||
marks=[large_gpu_mark(min_gb=32)],
|
||
),
|
||
"h2ovl": VLMTestInfo(
|
||
models = [
|
||
"h2oai/h2ovl-mississippi-800m",
|
||
"h2oai/h2ovl-mississippi-2b",
|
||
],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt: f"<|prompt|>{img_prompt}<|end|><|answer|>", # noqa: E501
|
||
single_image_prompts=IMAGE_ASSETS.prompts({
|
||
"stop_sign": "<image>\nWhat's the content in the center of the image?", # noqa: E501
|
||
"cherry_blossom": "<image>\nWhat is the season?",
|
||
}),
|
||
multi_image_prompt="Image-1: <image>\nImage-2: <image>\nDescribe the two images in short.", # noqa: E501
|
||
max_model_len=8192,
|
||
dtype="bfloat16",
|
||
use_tokenizer_eos=True,
|
||
num_logprobs=10,
|
||
patch_hf_runner=model_utils.h2ovl_patch_hf_runner,
|
||
),
|
||
"idefics3": VLMTestInfo(
|
||
models=["HuggingFaceTB/SmolVLM-256M-Instruct"],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt:f"<|begin_of_text|>User:{img_prompt}<end_of_utterance>\nAssistant:", # noqa: E501
|
||
img_idx_to_prompt=lambda idx: "<image>",
|
||
max_model_len=8192,
|
||
max_num_seqs=2,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
hf_output_post_proc=model_utils.idefics3_trunc_hf_output,
|
||
),
|
||
"intern_vl": VLMTestInfo(
|
||
models=[
|
||
"OpenGVLab/InternVL2-1B",
|
||
"OpenGVLab/InternVL2-2B",
|
||
"OpenGVLab/Mono-InternVL-2B",
|
||
],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt: f"<|im_start|>User\n{img_prompt}<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501
|
||
single_image_prompts=IMAGE_ASSETS.prompts({
|
||
"stop_sign": "<image>\nWhat's the content in the center of the image?", # noqa: E501
|
||
"cherry_blossom": "<image>\nWhat is the season?",
|
||
}),
|
||
multi_image_prompt="Image-1: <image>\nImage-2: <image>\nDescribe the two images in short.", # noqa: E501
|
||
max_model_len=4096,
|
||
# NOTE: Mono-InternVL-2B doesn't work with fp16,
|
||
# it will result NaN during inference.
|
||
# See: https://huggingface.co/OpenGVLab/Mono-InternVL-2B/discussions/9
|
||
dtype="bfloat16",
|
||
use_tokenizer_eos=True,
|
||
patch_hf_runner=model_utils.internvl_patch_hf_runner,
|
||
),
|
||
"llava_next": VLMTestInfo(
|
||
models=["llava-hf/llava-v1.6-mistral-7b-hf"],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.CUSTOM_INPUTS),
|
||
prompt_formatter=lambda img_prompt: f"[INST] {img_prompt} [/INST]",
|
||
max_model_len=10240,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.llava_image_vllm_to_hf_output,
|
||
custom_test_opts=[CustomTestOptions(
|
||
inputs=custom_inputs.multi_image_multi_aspect_ratio_inputs(
|
||
formatter=lambda img_prompt: f"[INST] {img_prompt} [/INST]"
|
||
),
|
||
limit_mm_per_prompt={"image": 4},
|
||
)],
|
||
),
|
||
"llava_onevision": VLMTestInfo(
|
||
models=["llava-hf/llava-onevision-qwen2-0.5b-ov-hf"],
|
||
test_type=VLMTestType.CUSTOM_INPUTS,
|
||
prompt_formatter=lambda vid_prompt: f"<|im_start|>user\n{vid_prompt}<|im_end|>\n<|im_start|>assistant\n", # noqa: E501
|
||
num_video_frames=16,
|
||
max_model_len=16384,
|
||
postprocess_inputs=model_utils.cast_dtype_post_processor(
|
||
"pixel_values_videos"
|
||
),
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.llava_onevision_vllm_to_hf_output,
|
||
custom_test_opts=[CustomTestOptions(
|
||
inputs=custom_inputs.multi_video_multi_aspect_ratio_inputs(
|
||
formatter=lambda vid_prompt: f"<|im_start|>user\n{vid_prompt}<|im_end|>\n<|im_start|>assistant\n", # noqa: E501
|
||
),
|
||
limit_mm_per_prompt={"video": 4},
|
||
runner_mm_key="videos",
|
||
)],
|
||
),
|
||
"llava_next_video": VLMTestInfo(
|
||
models=["llava-hf/LLaVA-NeXT-Video-7B-hf"],
|
||
test_type=VLMTestType.VIDEO,
|
||
prompt_formatter=lambda vid_prompt: f"USER: {vid_prompt} ASSISTANT:",
|
||
num_video_frames=16,
|
||
max_model_len=4096,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.llava_video_vllm_to_hf_output,
|
||
),
|
||
"mantis": VLMTestInfo(
|
||
models=["TIGER-Lab/Mantis-8B-siglip-llama3"],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt: f"<|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
|
||
max_model_len=4096,
|
||
postprocess_inputs=model_utils.cast_dtype_post_processor(
|
||
"pixel_values"
|
||
),
|
||
get_stop_token_ids=lambda tok: [128009],
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.mantis_vllm_to_hf_output,
|
||
patch_hf_runner=model_utils.mantis_patch_hf_runner,
|
||
marks=[
|
||
pytest.mark.skipif(
|
||
Version(TRANSFORMERS_VERSION) >= Version("4.48"),
|
||
reason="HF model is not compatible with transformers>=4.48",
|
||
)
|
||
],
|
||
),
|
||
"minicpmv_25": VLMTestInfo(
|
||
models=["openbmb/MiniCPM-Llama3-V-2_5"],
|
||
test_type=VLMTestType.IMAGE,
|
||
prompt_formatter=lambda img_prompt: f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
|
||
img_idx_to_prompt=lambda idx: "(<image>./</image>)\n",
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
get_stop_token_ids=lambda tok: [tok.eos_id, tok.eot_id],
|
||
postprocess_inputs=model_utils.wrap_inputs_post_processor,
|
||
hf_output_post_proc=model_utils.minicpmv_trunc_hf_output,
|
||
),
|
||
"minicpmo_26": VLMTestInfo(
|
||
models=["openbmb/MiniCPM-o-2_6"],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt: f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
|
||
img_idx_to_prompt=lambda idx: "(<image>./</image>)\n",
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
get_stop_token_ids=lambda tok: tok.convert_tokens_to_ids(['<|im_end|>', '<|endoftext|>']), # noqa: E501
|
||
postprocess_inputs=model_utils.ignore_inputs_post_processor(
|
||
"image_sizes"
|
||
),
|
||
hf_output_post_proc=model_utils.minicpmv_trunc_hf_output,
|
||
patch_hf_runner=model_utils.minicpmo_patch_hf_runner
|
||
),
|
||
"minicpmv_26": VLMTestInfo(
|
||
models=["openbmb/MiniCPM-V-2_6"],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt: f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
|
||
img_idx_to_prompt=lambda idx: "(<image>./</image>)\n",
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
get_stop_token_ids=lambda tok: tok.convert_tokens_to_ids(['<|im_end|>', '<|endoftext|>']), # noqa: E501
|
||
postprocess_inputs=model_utils.ignore_inputs_post_processor(
|
||
"image_sizes"
|
||
),
|
||
hf_output_post_proc=model_utils.minicpmv_trunc_hf_output,
|
||
),
|
||
"molmo": VLMTestInfo(
|
||
models=["allenai/Molmo-7B-D-0924"],
|
||
test_type=(VLMTestType.IMAGE),
|
||
prompt_formatter=identity,
|
||
max_model_len=4096,
|
||
max_num_seqs=2,
|
||
patch_hf_runner=model_utils.molmo_patch_hf_runner,
|
||
postprocess_inputs=model_utils.molmo_post_processor,
|
||
),
|
||
# Tests for phi3v currently live in another file because of a bug in
|
||
# transformers. Once this issue is fixed, we can enable them here instead.
|
||
# https://github.com/huggingface/transformers/issues/34307
|
||
# "phi3v": VLMTestInfo(
|
||
# models=["microsoft/Phi-3.5-vision-instruct"],
|
||
# test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
# prompt_formatter=lambda img_prompt: f"<|user|>\n{img_prompt}<|end|>\n<|assistant|>\n", # noqa: E501
|
||
# img_idx_to_prompt=lambda idx: f"<|image_{idx}|>\n",
|
||
# max_model_len=4096,
|
||
# max_num_seqs=2,
|
||
# task="generate",
|
||
# # use eager mode for hf runner since phi3v didn't work with flash_attn
|
||
# hf_model_kwargs={"_attn_implementation": "eager"},
|
||
# use_tokenizer_eos=True,
|
||
# vllm_output_post_proc=model_utils.phi3v_vllm_to_hf_output,
|
||
# num_logprobs=10,
|
||
# ),
|
||
"pixtral_hf": VLMTestInfo(
|
||
models=["nm-testing/pixtral-12b-FP8-dynamic"],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=lambda img_prompt: f"<s>[INST]{img_prompt}[/INST]",
|
||
img_idx_to_prompt=lambda idx: "[IMG]",
|
||
max_model_len=8192,
|
||
max_num_seqs=2,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
marks=[large_gpu_mark(min_gb=48)],
|
||
),
|
||
"qwen_vl": VLMTestInfo(
|
||
models=["Qwen/Qwen-VL"],
|
||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||
prompt_formatter=identity,
|
||
img_idx_to_prompt=lambda idx: f"Picture {idx}: <img></img>\n",
|
||
max_model_len=1024,
|
||
max_num_seqs=2,
|
||
vllm_output_post_proc=model_utils.qwen_vllm_to_hf_output,
|
||
prompt_path_encoder=model_utils.qwen_prompt_path_encoder,
|
||
),
|
||
### Tensor parallel / multi-gpu broadcast tests
|
||
"chameleon-broadcast": VLMTestInfo(
|
||
models=["facebook/chameleon-7b"],
|
||
prompt_formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:",
|
||
max_model_len=4096,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
postprocess_inputs=model_utils.cast_dtype_post_processor(
|
||
"pixel_values"
|
||
),
|
||
vllm_output_post_proc = lambda vllm_output, model: vllm_output[:2],
|
||
hf_output_post_proc = lambda hf_output, model: hf_output[:2],
|
||
comparator=check_outputs_equal,
|
||
marks=multi_gpu_marks(num_gpus=2),
|
||
**COMMON_BROADCAST_SETTINGS # type: ignore
|
||
),
|
||
"llava-broadcast": VLMTestInfo(
|
||
models=["llava-hf/llava-1.5-7b-hf"],
|
||
prompt_formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:",
|
||
max_model_len=4096,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.llava_image_vllm_to_hf_output,
|
||
marks=multi_gpu_marks(num_gpus=2),
|
||
**COMMON_BROADCAST_SETTINGS # type: ignore
|
||
),
|
||
"llava_next-broadcast": VLMTestInfo(
|
||
models=["llava-hf/llava-v1.6-mistral-7b-hf"],
|
||
prompt_formatter=lambda img_prompt: f"[INST] {img_prompt} [/INST]",
|
||
max_model_len=10240,
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.llava_image_vllm_to_hf_output,
|
||
marks=multi_gpu_marks(num_gpus=2),
|
||
**COMMON_BROADCAST_SETTINGS # type: ignore
|
||
),
|
||
### Custom input edge-cases for specific models
|
||
"intern_vl-diff-patches": VLMTestInfo(
|
||
models=["OpenGVLab/InternVL2-2B"],
|
||
prompt_formatter=lambda img_prompt: f"<|im_start|>User\n{img_prompt}<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501
|
||
test_type=VLMTestType.CUSTOM_INPUTS,
|
||
max_model_len=4096,
|
||
use_tokenizer_eos=True,
|
||
patch_hf_runner=model_utils.internvl_patch_hf_runner,
|
||
custom_test_opts=[
|
||
CustomTestOptions(
|
||
inputs=inp,
|
||
limit_mm_per_prompt={"image": 2},
|
||
) for inp in custom_inputs.different_patch_input_cases_internvl()
|
||
],
|
||
),
|
||
"llava_onevision-multiple-images": VLMTestInfo(
|
||
models=["llava-hf/llava-onevision-qwen2-0.5b-ov-hf"],
|
||
test_type=VLMTestType.CUSTOM_INPUTS,
|
||
max_model_len=16384,
|
||
max_num_seqs=2,
|
||
postprocess_inputs=model_utils.cast_dtype_post_processor(
|
||
"pixel_values"
|
||
),
|
||
auto_cls=AutoModelForVision2Seq,
|
||
vllm_output_post_proc=model_utils.llava_onevision_vllm_to_hf_output,
|
||
custom_test_opts=[CustomTestOptions(
|
||
inputs=custom_inputs.multi_image_multi_aspect_ratio_inputs(
|
||
formatter=lambda vid_prompt: f"<|im_start|>user\n{vid_prompt}<|im_end|>\n<|im_start|>assistant\n", # noqa: E501
|
||
),
|
||
limit_mm_per_prompt={"image": 4},
|
||
)],
|
||
),
|
||
}
|
||
# yapf: enable
|
||
|
||
|
||
def _mark_splits(
|
||
test_settings: dict[str, VLMTestInfo],
|
||
*,
|
||
num_groups: int,
|
||
) -> dict[str, VLMTestInfo]:
|
||
name_by_test_info_id = {id(v): k for k, v in test_settings.items()}
|
||
test_infos_by_model = defaultdict[str, list[VLMTestInfo]](list)
|
||
|
||
for info in test_settings.values():
|
||
for model in info.models:
|
||
test_infos_by_model[model].append(info)
|
||
|
||
models = sorted(test_infos_by_model.keys())
|
||
split_size = math.ceil(len(models) / num_groups)
|
||
|
||
new_test_settings = dict[str, VLMTestInfo]()
|
||
|
||
for i in range(num_groups):
|
||
models_in_group = models[i * split_size:(i + 1) * split_size]
|
||
|
||
for model in models_in_group:
|
||
for info in test_infos_by_model[model]:
|
||
new_marks = (info.marks or []) + [pytest.mark.split(group=i)]
|
||
new_info = info._replace(marks=new_marks)
|
||
new_test_settings[name_by_test_info_id[id(info)]] = new_info
|
||
|
||
missing_keys = test_settings.keys() - new_test_settings.keys()
|
||
assert not missing_keys, f"Missing keys: {missing_keys}"
|
||
|
||
return new_test_settings
|
||
|
||
|
||
VLM_TEST_SETTINGS = _mark_splits(VLM_TEST_SETTINGS, num_groups=2)
|
||
|
||
|
||
### Test wrappers
|
||
# Wrappers around the core test running func for:
|
||
# - single image
|
||
# - multi-image
|
||
# - image embeddings
|
||
# - video
|
||
# - custom inputs
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.IMAGE,
|
||
fork_new_process_for_each_test=False,
|
||
))
|
||
def test_single_image_models(tmp_path: PosixPath, model_type: str,
|
||
test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
image_assets: _ImageAssets, monkeypatch):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_single_image_test(
|
||
tmp_path=tmp_path,
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
image_assets=image_assets,
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.MULTI_IMAGE,
|
||
fork_new_process_for_each_test=False,
|
||
))
|
||
def test_multi_image_models(tmp_path: PosixPath, model_type: str,
|
||
test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
image_assets: _ImageAssets, monkeypatch):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_multi_image_test(
|
||
tmp_path=tmp_path,
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
image_assets=image_assets,
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.EMBEDDING,
|
||
fork_new_process_for_each_test=False,
|
||
))
|
||
def test_image_embedding_models(model_type: str,
|
||
test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
image_assets: _ImageAssets, monkeypatch):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_embedding_test(
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
image_assets=image_assets,
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.VIDEO,
|
||
fork_new_process_for_each_test=False,
|
||
))
|
||
def test_video_models(model_type: str, test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner], vllm_runner: type[VllmRunner],
|
||
video_assets: _VideoAssets, monkeypatch):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_video_test(
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
video_assets=video_assets,
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.CUSTOM_INPUTS,
|
||
fork_new_process_for_each_test=False,
|
||
))
|
||
def test_custom_inputs_models(
|
||
model_type: str,
|
||
test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
monkeypatch,
|
||
):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_custom_inputs_test(
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
)
|
||
|
||
|
||
#### Tests filtering for things running each test as a new process
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.IMAGE,
|
||
fork_new_process_for_each_test=True,
|
||
))
|
||
@fork_new_process_for_each_test
|
||
def test_single_image_models_heavy(tmp_path: PosixPath, model_type: str,
|
||
test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
image_assets: _ImageAssets, monkeypatch):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_single_image_test(
|
||
tmp_path=tmp_path,
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
image_assets=image_assets,
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.MULTI_IMAGE,
|
||
fork_new_process_for_each_test=True,
|
||
))
|
||
@fork_new_process_for_each_test
|
||
def test_multi_image_models_heavy(tmp_path: PosixPath, model_type: str,
|
||
test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
image_assets: _ImageAssets, monkeypatch):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_multi_image_test(
|
||
tmp_path=tmp_path,
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
image_assets=image_assets,
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.EMBEDDING,
|
||
fork_new_process_for_each_test=True,
|
||
))
|
||
@fork_new_process_for_each_test
|
||
def test_image_embedding_models_heavy(model_type: str,
|
||
test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
image_assets: _ImageAssets, monkeypatch):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_embedding_test(
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
image_assets=image_assets,
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.VIDEO,
|
||
fork_new_process_for_each_test=True,
|
||
))
|
||
def test_video_models_heavy(model_type: str, test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
video_assets: _VideoAssets, monkeypatch):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_video_test(
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
video_assets=video_assets,
|
||
)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"model_type,test_case",
|
||
get_parametrized_options(
|
||
VLM_TEST_SETTINGS,
|
||
test_type=VLMTestType.CUSTOM_INPUTS,
|
||
fork_new_process_for_each_test=True,
|
||
))
|
||
@fork_new_process_for_each_test
|
||
def test_custom_inputs_models_heavy(
|
||
model_type: str,
|
||
test_case: ExpandableVLMTestArgs,
|
||
hf_runner: type[HfRunner],
|
||
vllm_runner: type[VllmRunner],
|
||
monkeypatch,
|
||
):
|
||
if model_type in REQUIRES_V0_MODELS:
|
||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||
model_test_info = VLM_TEST_SETTINGS[model_type]
|
||
runners.run_custom_inputs_test(
|
||
model_test_info=model_test_info,
|
||
test_case=test_case,
|
||
hf_runner=hf_runner,
|
||
vllm_runner=vllm_runner,
|
||
)
|