Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

103 lines
3.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Compare the outputs of HF and vLLM when using greedy sampling.
Run `pytest tests/models/test_models.py`.
"""
import pytest
from ...utils import check_logprobs_close
# These have unsupported head_dim for FA. We do not
# not have a clean way to fall back, so we fail with
# a clear msg when it happens.
# https://github.com/vllm-project/vllm/issues/14524
REQUIRES_V0 = ["microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"]
@pytest.mark.parametrize(
"model",
[
pytest.param(
"bigscience/bloom-560m", # bloom - testing alibi slopes
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param(
"openai-community/gpt2", # gpt2
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param("Milos/slovak-gpt-j-405M"), # gptj
pytest.param("bigcode/tiny_starcoder_py"), # gpt_bigcode
pytest.param("EleutherAI/pythia-70m"), # gpt_neox
pytest.param(
"google/gemma-1.1-2b-it", # gemma
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param(
"THUDM/chatglm3-6b", # chatglm (text-only)
),
pytest.param(
"meta-llama/Llama-3.2-1B-Instruct", # llama
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param(
"openbmb/MiniCPM3-4B",
# fused_moe not supported on CPU
marks=[pytest.mark.core_model],
),
pytest.param(
"facebook/opt-125m", # opt
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param(
"microsoft/phi-2", # phi
marks=[pytest.mark.core_model],
),
pytest.param(
"Qwen/Qwen-7B", # qwen (text-only)
),
pytest.param(
"Qwen/Qwen2.5-0.5B-Instruct", # qwen2
marks=[pytest.mark.core_model],
),
pytest.param("stabilityai/stablelm-3b-4e1t"), # stablelm
pytest.param("bigcode/starcoder2-3b"), # starcoder2
pytest.param(
"ehristoforu/Falcon3-MoE-2x7B-Insruct", # mixtral
marks=[pytest.mark.cpu_model],
)
])
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
num_logprobs: int,
monkeypatch,
) -> None:
if model in REQUIRES_V0:
monkeypatch.setenv("VLLM_USE_V1", "0")
with hf_runner(model, dtype=dtype) as hf_model:
if model.startswith("THUDM/chatglm3"):
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.transformer.output_layer
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)