
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com> Co-authored-by: Michael Goin <michael@neuralmagic.com>
103 lines
3.3 KiB
Python
103 lines
3.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Compare the outputs of HF and vLLM when using greedy sampling.
|
|
|
|
Run `pytest tests/models/test_models.py`.
|
|
"""
|
|
import pytest
|
|
|
|
from ...utils import check_logprobs_close
|
|
|
|
# These have unsupported head_dim for FA. We do not
|
|
# not have a clean way to fall back, so we fail with
|
|
# a clear msg when it happens.
|
|
# https://github.com/vllm-project/vllm/issues/14524
|
|
REQUIRES_V0 = ["microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
pytest.param(
|
|
"bigscience/bloom-560m", # bloom - testing alibi slopes
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param(
|
|
"openai-community/gpt2", # gpt2
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param("Milos/slovak-gpt-j-405M"), # gptj
|
|
pytest.param("bigcode/tiny_starcoder_py"), # gpt_bigcode
|
|
pytest.param("EleutherAI/pythia-70m"), # gpt_neox
|
|
pytest.param(
|
|
"google/gemma-1.1-2b-it", # gemma
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param(
|
|
"THUDM/chatglm3-6b", # chatglm (text-only)
|
|
),
|
|
pytest.param(
|
|
"meta-llama/Llama-3.2-1B-Instruct", # llama
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param(
|
|
"openbmb/MiniCPM3-4B",
|
|
# fused_moe not supported on CPU
|
|
marks=[pytest.mark.core_model],
|
|
),
|
|
pytest.param(
|
|
"facebook/opt-125m", # opt
|
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
|
),
|
|
pytest.param(
|
|
"microsoft/phi-2", # phi
|
|
marks=[pytest.mark.core_model],
|
|
),
|
|
pytest.param(
|
|
"Qwen/Qwen-7B", # qwen (text-only)
|
|
),
|
|
pytest.param(
|
|
"Qwen/Qwen2.5-0.5B-Instruct", # qwen2
|
|
marks=[pytest.mark.core_model],
|
|
),
|
|
pytest.param("stabilityai/stablelm-3b-4e1t"), # stablelm
|
|
pytest.param("bigcode/starcoder2-3b"), # starcoder2
|
|
pytest.param(
|
|
"ehristoforu/Falcon3-MoE-2x7B-Insruct", # mixtral
|
|
marks=[pytest.mark.cpu_model],
|
|
)
|
|
])
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
def test_models(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
monkeypatch,
|
|
) -> None:
|
|
if model in REQUIRES_V0:
|
|
monkeypatch.setenv("VLLM_USE_V1", "0")
|
|
|
|
with hf_runner(model, dtype=dtype) as hf_model:
|
|
if model.startswith("THUDM/chatglm3"):
|
|
hf_model.model.get_output_embeddings = lambda: \
|
|
hf_model.model.transformer.output_layer
|
|
|
|
hf_outputs = hf_model.generate_greedy_logprobs_limit(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy_logprobs(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|