Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

354 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
from tests.utils import multi_gpu_test
from vllm.engine.arg_utils import EngineArgs
from vllm.sampling_params import SamplingParams
from ...utils import check_outputs_equal
# This test is for the hybrid models
MODELS = ["ai21labs/Jamba-tiny-dev"]
# Bamba at Fp32 is too big for the CI (L4 GPU).
# MODELS = ["ai21labs/Jamba-tiny-dev", "ibm-ai-platform/Bamba-9B"]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [96])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
# numeric error produces different generation
if 'Bamba' in model:
example_prompts.pop(3)
with hf_runner(
model,
dtype=dtype,
model_kwargs={
"use_mamba_kernels":
False, # mamba kernels are not installed so HF
# don't use them
}) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
for i in range(len(example_prompts)):
hf_output_ids, hf_output_str = hf_outputs[i]
vllm_output_ids, vllm_output_str = vllm_outputs[i]
assert hf_output_str == vllm_output_str, (
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
assert hf_output_ids == vllm_output_ids, (
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [96])
def test_batching(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
# To pass the small model tests, we need full precision.
for_loop_outputs = []
with vllm_runner(model, dtype=dtype) as vllm_model:
for prompt in example_prompts:
for_loop_outputs.append(
vllm_model.generate_greedy([prompt], max_tokens)[0])
batched_outputs = vllm_model.generate_greedy(example_prompts,
max_tokens)
check_outputs_equal(
outputs_0_lst=for_loop_outputs,
outputs_1_lst=batched_outputs,
name_0="for_loop_vllm",
name_1="batched_vllm",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float16"])
@pytest.mark.parametrize("max_tokens", [10])
def test_mamba_prefill_chunking_with_parallel_sampling(
hf_runner, vllm_runner, example_prompts, model: str, dtype: str,
max_tokens: int) -> None:
# Tests prefill chunking in conjunction with n>1, in this case,
# prefill is populated with decoding tokens and we test that it
# doesn't fail This test might fail if cache is not allocated
# correctly for n > 1 decoding steps inside a
# chunked prefill forward pass (where we have both prefills
# and decoding together )
sampling_params = SamplingParams(n=3,
temperature=1,
seed=0,
max_tokens=max_tokens)
with vllm_runner(
model,
dtype=dtype,
enable_chunked_prefill=True,
max_num_batched_tokens=30,
max_num_seqs=10 # forces prefill chunks with decoding
) as vllm_model:
vllm_model.generate(example_prompts, sampling_params)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [7])
def test_mamba_prefill_chunking(hf_runner, vllm_runner, example_prompts,
model: str, dtype: str,
max_tokens: int) -> None:
# numeric error during prefill chucking produces different generation
# compared to w/o prefill chunking for those examples, removed them for now
if 'Jamba' in model:
example_prompts.pop(7)
example_prompts.pop(2)
example_prompts.pop(1)
elif 'Bamba' in model:
example_prompts.pop(6)
example_prompts.pop(3)
example_prompts.pop(2)
dtype = "half" # use a different dtype for Bamba
with hf_runner(
model,
dtype=dtype,
model_kwargs={
"use_mamba_kernels":
False, # mamba kernels are not installed so HF
# don't use them
}) as hf_model:
non_chunked = hf_model.generate_greedy(example_prompts, max_tokens)
with vllm_runner(model,
dtype=dtype,
enable_chunked_prefill=True,
max_num_batched_tokens=5,
max_num_seqs=2) as vllm_model:
chunked = vllm_model.generate_greedy(example_prompts,
max_tokens=max_tokens)
check_outputs_equal(
outputs_0_lst=chunked,
outputs_1_lst=non_chunked,
name_0="chunked",
name_1="non_chunked",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [15])
def test_parallel_sampling(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
with vllm_runner(model, dtype=dtype) as vllm_model:
for_loop_outputs = []
for _ in range(10):
for_loop_outputs.append(
# using example_prompts index 1 instead of 0 since with 0 the
# logprobs get really close and the test doesn't pass
vllm_model.generate_greedy([example_prompts[1]], max_tokens)
[0])
sampling_params = SamplingParams(n=10,
temperature=0.001,
seed=0,
max_tokens=max_tokens)
n_lt_1_outputs = vllm_model.generate([example_prompts[1]],
sampling_params)
token_ids, texts = n_lt_1_outputs[0]
n_lt_1_outputs = [(token_id, text)
for token_id, text in zip(token_ids, texts)]
check_outputs_equal(
outputs_0_lst=n_lt_1_outputs,
outputs_1_lst=for_loop_outputs,
name_0="vllm_n_lt_1_outputs",
name_1="vllm",
)
@pytest.mark.skip(reason="RE-ENABLE: test is currently failing on main.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [20])
def test_mamba_cache_cg_padding(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
# This test is for verifying that mamba cache is padded to CG captured
# batch size. If it's not, a torch RuntimeError will be raised because
# tensor dimensions aren't compatible
vllm_config = EngineArgs(model=model).create_engine_config()
while len(example_prompts) == vllm_config.pad_for_cudagraph(
len(example_prompts)):
example_prompts.append(example_prompts[0])
try:
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_model.generate_greedy(example_prompts, max_tokens)
except RuntimeError:
pytest.fail(
"Couldn't run batch size which is not equal to a Cuda Graph "
"captured batch size. "
"Could be related to mamba cache not padded correctly")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [20])
def test_models_preemption_recompute(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
# Tests that outputs are identical with and w/o preemtions (recompute)
assert dtype == "float"
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_model.model.llm_engine.scheduler[
0].ENABLE_ARTIFICIAL_PREEMPT = True
preempt_vllm_outputs = vllm_model.generate_greedy(
example_prompts, max_tokens)
vllm_model.model.llm_engine.scheduler[
0].ENABLE_ARTIFICIAL_PREEMPT = False
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
check_outputs_equal(
outputs_0_lst=preempt_vllm_outputs,
outputs_1_lst=vllm_outputs,
name_0="vllm_preepmtions",
name_1="vllm",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
def test_fail_upon_inc_requests_and_finished_requests_lt_available_blocks(
vllm_runner,
model: str,
dtype: str,
example_prompts,
) -> None:
# This test is for verifying that the hybrid inner state management doesn't
# collapse in case where the number of incoming requests and
# finished_requests_ids is larger than the maximum mamba block capacity.
# This could generally happen due to the fact that hybrid does support
# statelessness mechanism where it can cleanup new incoming requests in
# a single step.
try:
with vllm_runner(model, dtype=dtype, max_num_seqs=10) as vllm_model:
vllm_model.generate_greedy([example_prompts[0]] * 100, 10)
except ValueError:
pytest.fail("Hybrid inner state wasn't cleaned up properly between"
"steps finished requests registered unnecessarily ")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
def test_state_cleanup(
vllm_runner,
model: str,
dtype: str,
example_prompts,
) -> None:
# This test is for verifying that the Hybrid state is cleaned up between
# steps, If its not cleaned, an error would be expected.
try:
with vllm_runner(model, dtype=dtype) as vllm_model:
for _ in range(10):
vllm_model.generate_greedy([example_prompts[0]] * 100, 1)
except ValueError:
pytest.fail("Hybrid inner state wasn't cleaned up between states, "
"could be related to finished_requests_ids")
@pytest.mark.skip(reason="RE-ENABLE: test is currently failing on main.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
def test_multistep(
vllm_runner,
model: str,
dtype: str,
example_prompts,
) -> None:
# This test is verifying that multistep works correctly
#on mamba-like models
with vllm_runner(model, num_scheduler_steps=8,
max_num_seqs=2) as vllm_model:
vllm_model.generate_greedy([example_prompts[0]] * 10, 1)
@pytest.mark.skip(reason="RE-ENABLE: test is currently failing on main.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [64])
def test_multistep_correctness(vllm_runner, model: str, dtype: str,
max_tokens: int, example_prompts) -> None:
with vllm_runner(model, num_scheduler_steps=8,
max_num_seqs=2) as vllm_model:
vllm_outputs_multistep = vllm_model.generate_greedy(
example_prompts, max_tokens)
with vllm_runner(model, num_scheduler_steps=1,
max_num_seqs=2) as vllm_model:
vllm_outputs_single_step = vllm_model.generate_greedy(
example_prompts, max_tokens)
check_outputs_equal(
outputs_0_lst=vllm_outputs_multistep,
outputs_1_lst=vllm_outputs_single_step,
name_0="vllm_outputs_multistep",
name_1="vllm_outputs_single_step",
)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [64])
def test_hybrid_distributed_produces_identical_generation(
vllm_runner, model: str, dtype: str, max_tokens: int,
example_prompts) -> None:
with vllm_runner(model, dtype=dtype, tensor_parallel_size=2) as vllm_model:
vllm_outputs_tp_2 = vllm_model.generate_greedy(example_prompts,
max_tokens)
with vllm_runner(model, dtype=dtype, tensor_parallel_size=1) as vllm_model:
vllm_outputs_tp_1 = vllm_model.generate_greedy(example_prompts,
max_tokens)
check_outputs_equal(
outputs_0_lst=vllm_outputs_tp_1,
outputs_1_lst=vllm_outputs_tp_2,
name_0="vllm_tp_1",
name_1="vllm_tp_2",
)