vllm/tests/distributed/test_pipeline_parallel.py
Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

472 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""
WARNING: This test runs in both single-node (4 GPUs) and multi-node
(2 node with 2 GPUs each) modes. If the test only uses 2 GPUs, it is
important to set the distributed backend to "mp" to avoid Ray scheduling
all workers in a node other than the head node, which can cause the test
to fail.
"""
import json
import os
from dataclasses import dataclass
from typing import Literal, NamedTuple, Optional
import pytest
from vllm.config import TaskOption
from vllm.logger import init_logger
from ..models.registry import HF_EXAMPLE_MODELS
from ..utils import compare_two_settings, fork_new_process_for_each_test
logger = init_logger("test_pipeline_parallel")
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
@pytest.fixture(scope="function", autouse=True)
def use_v0_only(monkeypatch):
"""
For PP, we fall back to V0 by default. This means
that the TP baseline runs with V1 while the PP engine
runs with V0. This gives divergent results with dummy
weights. Once we enable V1 by default for PP, we can
remove this.
"""
monkeypatch.setenv('VLLM_USE_V1', '0')
class ParallelSetup(NamedTuple):
tp_size: int
pp_size: int
eager_mode: bool
chunked_prefill: bool
class PPTestOptions(NamedTuple):
multi_node_only: bool
load_format: Optional[str] = None
@dataclass
class PPTestSettings:
parallel_setups: list[ParallelSetup]
# NOTE: the length of distributed_backends and
# vllm_major_versions should be the same, and they
# are first zipped together to iterate over all
# test settings.
distributed_backends: list[str]
# vllm major version: "0" for V0, "1" for V1
vllm_major_versions: list[str]
task: TaskOption
test_options: PPTestOptions
def __post_init__(self):
if len(self.distributed_backends) != len(self.vllm_major_versions):
raise ValueError(
f"Length mismatch: distributed_backends "
f"({len(self.distributed_backends)}) != "
f"vllm_major_versions ({len(self.vllm_major_versions)})")
@staticmethod
def detailed(
*,
tp_base: int = 1,
pp_base: int = 2,
multi_node_only: bool = False,
task: TaskOption = "auto",
load_format: Optional[str] = None,
):
return PPTestSettings(
parallel_setups=[
ParallelSetup(tp_size=tp_base,
pp_size=pp_base,
eager_mode=False,
chunked_prefill=False),
ParallelSetup(tp_size=tp_base,
pp_size=2 * pp_base,
eager_mode=False,
chunked_prefill=True),
ParallelSetup(tp_size=tp_base,
pp_size=2 * pp_base,
eager_mode=True,
chunked_prefill=False),
ParallelSetup(tp_size=2 * tp_base,
pp_size=pp_base,
eager_mode=False,
chunked_prefill=True),
ParallelSetup(tp_size=2 * tp_base,
pp_size=pp_base,
eager_mode=True,
chunked_prefill=False),
],
# only ray is supported for V1
distributed_backends=["mp", "ray", "ray"],
vllm_major_versions=["0", "0", "1"],
task=task,
test_options=PPTestOptions(multi_node_only=multi_node_only,
load_format=load_format),
)
@staticmethod
def fast(
*,
tp_base: int = 1,
pp_base: int = 2,
task: TaskOption = "auto",
multi_node_only: bool = False,
load_format: Optional[str] = None,
):
return PPTestSettings(
parallel_setups=[
ParallelSetup(tp_size=tp_base,
pp_size=pp_base,
eager_mode=True,
chunked_prefill=False),
],
distributed_backends=["mp"],
vllm_major_versions=["0"],
task=task,
test_options=PPTestOptions(multi_node_only=multi_node_only,
load_format=load_format),
)
def iter_params(self, model_id: str):
opts = self.test_options
for parallel_setup in self.parallel_setups:
for backend, vllm_major_version in zip(self.distributed_backends,
self.vllm_major_versions):
yield (model_id, parallel_setup, backend, vllm_major_version,
self.task, opts)
# NOTE: You can adjust tp_base and/or pp_base locally to fit the model in GPU
# The values displayed here are only a rough indicator of the size of the model
# yapf: disable
TEXT_GENERATION_MODELS = {
# [Decoder-only]
# Uses Llama
# "BAAI/AquilaChat-7B": PPTestSettings.fast(),
"Snowflake/snowflake-arctic-instruct": PPTestSettings.fast(load_format="dummy"), # noqa: E501
"baichuan-inc/Baichuan-7B": PPTestSettings.fast(),
"baichuan-inc/Baichuan2-13B-Chat": PPTestSettings.fast(),
"bigscience/bloomz-1b1": PPTestSettings.fast(),
"THUDM/chatglm3-6b": PPTestSettings.fast(),
"CohereForAI/c4ai-command-r-v01": PPTestSettings.fast(load_format="dummy"),
"databricks/dbrx-instruct": PPTestSettings.fast(load_format="dummy"),
"Deci/DeciLM-7B-instruct": PPTestSettings.fast(),
"deepseek-ai/deepseek-llm-7b-chat": PPTestSettings.fast(),
"deepseek-ai/DeepSeek-V2-Lite-Chat": PPTestSettings.fast(),
"LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct": PPTestSettings.fast(),
"tiiuae/falcon-7b": PPTestSettings.fast(),
"google/gemma-2b": PPTestSettings.fast(),
"google/gemma-2-9b": PPTestSettings.fast(),
"gpt2": PPTestSettings.fast(),
"bigcode/starcoder": PPTestSettings.fast(),
"EleutherAI/gpt-j-6b": PPTestSettings.fast(),
"EleutherAI/pythia-12b": PPTestSettings.fast(),
"ibm/PowerLM-3b": PPTestSettings.fast(),
"ibm/PowerMoE-3b": PPTestSettings.fast(),
# Uses Llama
# "internlm/internlm-chat-7b": PPTestSettings.fast(),
"internlm/internlm2-chat-7b": PPTestSettings.fast(),
"inceptionai/jais-13b-chat": PPTestSettings.fast(),
"ai21labs/Jamba-tiny-dev": PPTestSettings.fast(),
"meta-llama/Llama-3.2-1B-Instruct": PPTestSettings.detailed(),
"openbmb/MiniCPM-2B-sft-bf16": PPTestSettings.fast(),
"openbmb/MiniCPM3-4B": PPTestSettings.fast(),
# Uses Llama
# "mistralai/Mistral-7B-Instruct-v0.1": PPTestSettings.fast(),
"state-spaces/mamba-130m-hf": PPTestSettings.fast(),
"mistralai/Mixtral-8x7B-Instruct-v0.1": PPTestSettings.fast(load_format="dummy"), # noqa: E501
"mosaicml/mpt-7b": PPTestSettings.fast(),
"nvidia/Minitron-8B-Base": PPTestSettings.fast(),
"allenai/OLMo-1B-hf": PPTestSettings.fast(),
"shanearora/OLMo-7B-1124-hf": PPTestSettings.fast(),
"allenai/OLMoE-1B-7B-0924-Instruct": PPTestSettings.fast(),
"facebook/opt-iml-max-1.3b": PPTestSettings.fast(),
"OrionStarAI/Orion-14B-Chat": PPTestSettings.fast(),
"adept/persimmon-8b-chat": PPTestSettings.fast(),
"microsoft/phi-2": PPTestSettings.fast(),
"microsoft/Phi-3-small-8k-instruct": PPTestSettings.fast(),
"microsoft/Phi-3.5-MoE-instruct": PPTestSettings.detailed(multi_node_only=True, load_format="dummy"), # noqa: E501
"Qwen/Qwen-7B-Chat": PPTestSettings.fast(),
"Qwen/Qwen2-7B-Instruct": PPTestSettings.fast(),
"Qwen/Qwen1.5-MoE-A2.7B-Chat": PPTestSettings.fast(),
"stabilityai/stablelm-3b-4e1t": PPTestSettings.fast(),
"bigcode/starcoder2-3b": PPTestSettings.fast(),
"upstage/solar-pro-preview-instruct": PPTestSettings.fast(load_format="dummy"), # noqa: E501
# FIXME: Cannot load tokenizer in latest transformers version.
# Need to use tokenizer from `meta-llama/Llama-2-7b-chat-hf`
# "xverse/XVERSE-7B-Chat": PPTestSettings.fast(),
# [Encoder-only]
# TODO: Implement PP
# "facebook/bart-base": PPTestSettings.fast(),
}
EMBEDDING_MODELS = { # type: ignore[var-annotated]
# [Text-only]
"intfloat/e5-mistral-7b-instruct": PPTestSettings.fast(),
"BAAI/bge-multilingual-gemma2": PPTestSettings.fast(),
"Qwen/Qwen2.5-Math-RM-72B": PPTestSettings.fast(load_format="dummy"),
}
MULTIMODAL_MODELS = {
# [Decoder-only]
"Salesforce/blip2-opt-2.7b": PPTestSettings.fast(),
"facebook/chameleon-7b": PPTestSettings.fast(),
"adept/fuyu-8b": PPTestSettings.fast(),
"THUDM/glm-4v-9b": PPTestSettings.fast(),
"OpenGVLab/InternVL2-1B": PPTestSettings.fast(),
"llava-hf/llava-1.5-7b-hf": PPTestSettings.fast(),
"llava-hf/llava-v1.6-mistral-7b-hf": PPTestSettings.fast(),
"llava-hf/LLaVA-NeXT-Video-7B-hf": PPTestSettings.fast(),
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf": PPTestSettings.fast(),
"openbmb/MiniCPM-Llama3-V-2_5": PPTestSettings.fast(),
"allenai/Molmo-7B-D-0924": PPTestSettings.fast(),
"microsoft/Phi-3.5-vision-instruct": PPTestSettings.fast(),
"mistralai/Pixtral-12B-2409": PPTestSettings.fast(load_format="dummy"),
"Qwen/Qwen-VL-Chat": PPTestSettings.fast(),
"Qwen/Qwen2-Audio-7B-Instruct": PPTestSettings.fast(),
"Qwen/Qwen2-VL-2B-Instruct": PPTestSettings.fast(),
"fixie-ai/ultravox-v0_5-llama-3_2-1b": PPTestSettings.fast(),
# [Encoder-decoder]
# TODO: Implement PP
# "meta-llama/Llama-3.2-11B-Vision-Instruct": PPTestSettings.fast(),
}
# yapf: enable
# NOTE: You can update this on your local machine to run specific tests
TEST_MODELS = [
# [LANGUAGE GENERATION]
"microsoft/Phi-3.5-MoE-instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"ibm/PowerLM-3b",
# [LANGUAGE EMBEDDING]
"intfloat/e5-mistral-7b-instruct",
"BAAI/bge-multilingual-gemma2",
# [MULTIMODAL GENERATION]
"OpenGVLab/InternVL2-1B",
"microsoft/Phi-3.5-vision-instruct",
"fixie-ai/ultravox-v0_5-llama-3_2-1b",
# [LANGUAGE GENERATION - HYBRID ARCH]
"ai21labs/Jamba-tiny-dev",
]
def _compare_tp(
model_id: str,
parallel_setup: ParallelSetup,
distributed_backend: str,
vllm_major_version: str,
task: TaskOption,
test_options: PPTestOptions,
num_gpus_available: int,
*,
method: Literal["generate", "encode"],
is_multimodal: bool,
):
(
tp_size,
pp_size,
eager_mode,
chunked_prefill,
) = parallel_setup
multi_node_only, load_format = test_options
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
model_info.check_transformers_version(on_fail="skip")
trust_remote_code = model_info.trust_remote_code
tokenizer_mode = model_info.tokenizer_mode
hf_overrides = model_info.hf_overrides
if load_format == "dummy":
# Avoid OOM
text_overrides = {
"num_hidden_layers": 4,
"hidden_size": 512,
"intermediate_size": 800,
"num_attention_heads": 4,
"num_key_value_heads": 1,
}
if is_multimodal:
hf_overrides.update({"text_config": text_overrides})
else:
hf_overrides.update(text_overrides)
else:
model_info.check_available_online(on_fail="skip")
if num_gpus_available < tp_size * pp_size:
pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs")
if VLLM_MULTI_NODE and distributed_backend == "mp":
pytest.skip("Skipping multi-node pipeline parallel test for "
"multiprocessing distributed backend")
if multi_node_only and not VLLM_MULTI_NODE:
pytest.skip("Not in multi-node setting")
common_args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"float16",
"--max-model-len",
"2048",
"--max-num-seqs",
"8",
]
if chunked_prefill:
common_args.append("--enable-chunked-prefill")
if eager_mode:
common_args.append("--enforce-eager")
if task != "auto":
common_args.extend(["--task", task])
if trust_remote_code:
common_args.append("--trust-remote-code")
if tokenizer_mode:
common_args.extend(["--tokenizer-mode", tokenizer_mode])
if load_format:
common_args.extend(["--load-format", load_format])
if hf_overrides:
common_args.extend(["--hf-overrides", json.dumps(hf_overrides)])
specific_case = tp_size == 2 and pp_size == 2 and chunked_prefill
if distributed_backend == "ray" and (vllm_major_version == "1"
or specific_case):
# For V1, test Ray Compiled Graph for all the tests
# For V0, test Ray Compiled Graph for a subset of the tests
pp_env = {
"VLLM_USE_V1": vllm_major_version,
"VLLM_USE_RAY_COMPILED_DAG": "1",
"VLLM_USE_RAY_SPMD_WORKER": "1",
"VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL": "1",
}
# Temporary. Currently when zeromq + SPMD is used, it does not properly
# terminate because of a Ray Compiled Graph issue.
common_args.append("--disable-frontend-multiprocessing")
else:
pp_env = None
pp_args = [
*common_args,
"--pipeline-parallel-size",
str(pp_size),
"--tensor-parallel-size",
str(tp_size),
"--distributed-executor-backend",
distributed_backend,
]
# compare without pipeline parallelism
# NOTE: use mp backend for TP
# PP tests might involve multiple nodes, and ray might
# schedule all workers in a node other than the head node,
# which can cause the test to fail.
tp_args = [
*common_args,
"--tensor-parallel-size",
str(tp_size),
"--distributed-executor-backend",
"mp",
]
try:
compare_two_settings(model_id, pp_args, tp_args, pp_env, method=method)
except Exception:
if pp_env is None:
raise
else:
# Ray Compiled Graph tests are flaky,
# so we don't want to fail the test
logger.exception("Ray Compiled Graph tests failed")
@pytest.mark.parametrize(
("model_id", "parallel_setup", "distributed_backend", "vllm_major_version",
"task", "test_options"),
[
params for model_id, settings in TEXT_GENERATION_MODELS.items()
for params in settings.iter_params(model_id) if model_id in TEST_MODELS
],
)
@fork_new_process_for_each_test
def test_tp_language_generation(
model_id: str,
parallel_setup: ParallelSetup,
distributed_backend: str,
vllm_major_version: str,
task: TaskOption,
test_options: PPTestOptions,
num_gpus_available,
):
_compare_tp(model_id,
parallel_setup,
distributed_backend,
vllm_major_version,
task,
test_options,
num_gpus_available,
method="generate",
is_multimodal=False)
@pytest.mark.parametrize(
("model_id", "parallel_setup", "distributed_backend", "vllm_major_version",
"task", "test_options"),
[
params for model_id, settings in EMBEDDING_MODELS.items()
for params in settings.iter_params(model_id) if model_id in TEST_MODELS
],
)
@fork_new_process_for_each_test
def test_tp_language_embedding(
model_id: str,
parallel_setup: ParallelSetup,
distributed_backend: str,
vllm_major_version: str,
task: TaskOption,
test_options: PPTestOptions,
num_gpus_available,
):
_compare_tp(model_id,
parallel_setup,
distributed_backend,
vllm_major_version,
task,
test_options,
num_gpus_available,
method="encode",
is_multimodal=False)
@pytest.mark.parametrize(
("model_id", "parallel_setup", "distributed_backend", "vllm_major_version",
"task", "test_options"),
[
params for model_id, settings in MULTIMODAL_MODELS.items()
for params in settings.iter_params(model_id) if model_id in TEST_MODELS
],
)
@fork_new_process_for_each_test
def test_tp_multimodal_generation(
model_id: str,
parallel_setup: ParallelSetup,
distributed_backend: str,
vllm_major_version: str,
task: TaskOption,
test_options: PPTestOptions,
num_gpus_available,
):
_compare_tp(model_id,
parallel_setup,
distributed_backend,
vllm_major_version,
task,
test_options,
num_gpus_available,
method="generate",
is_multimodal=True)