vllm/tests/detokenizer/test_stop_strings.py
Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

142 lines
4.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Any, Optional
import pytest
from vllm import LLM, SamplingParams, envs
MODEL = "meta-llama/llama-2-7b-hf"
MAX_TOKENS = 200
def _test_stopping(llm: LLM,
expected_output: str,
expected_reason: Any,
stop: Optional[list[str]] = None,
stop_token_ids: Optional[list[int]] = None,
include_in_output: bool = False) -> None:
output = llm.generate(
"A story about vLLM:\n",
SamplingParams(
temperature=0.0,
max_tokens=MAX_TOKENS,
stop=stop,
stop_token_ids=stop_token_ids,
include_stop_str_in_output=include_in_output,
))[0].outputs[0]
assert output is not None
assert output.text == expected_output
assert output.stop_reason == expected_reason
def _set_async_mode(llm, is_async):
llm.llm_engine.scheduler[0].use_async_output_proc = is_async
def _stop_basic(llm):
_test_stopping(llm,
stop=["."],
include_in_output=False,
expected_output="VLLM is a 100% volunteer organization",
expected_reason=".")
_test_stopping(llm,
stop=["."],
include_in_output=True,
expected_output="VLLM is a 100% volunteer organization.",
expected_reason=".")
def _stop_multi_tokens(llm):
_test_stopping(
llm,
stop=["group of peo", "short"],
include_in_output=False,
expected_output="VLLM is a 100% volunteer organization. We are a ",
expected_reason="group of peo")
_test_stopping(
llm,
stop=["group of peo", "short"],
include_in_output=True,
expected_output=
"VLLM is a 100% volunteer organization. We are a group of peo",
expected_reason="group of peo")
def _stop_partial_token(llm):
_test_stopping(llm,
stop=["gani"],
include_in_output=False,
expected_output="VLLM is a 100% volunteer or",
expected_reason="gani")
_test_stopping(llm,
stop=["gani"],
include_in_output=True,
expected_output="VLLM is a 100% volunteer organi",
expected_reason="gani")
def _stop_token_id(llm):
# token id 13013 => " organization"
_test_stopping(llm,
stop_token_ids=[13013],
include_in_output=False,
expected_output="VLLM is a 100% volunteer",
expected_reason=13013)
_test_stopping(llm,
stop_token_ids=[13013],
include_in_output=True,
expected_output="VLLM is a 100% volunteer organization",
expected_reason=13013)
@pytest.mark.skip_global_cleanup
def test_stop_strings():
# If V0, must set enforce_eager=False since we use
# async output processing below.
vllm_model = LLM(MODEL, enforce_eager=envs.VLLM_USE_V1)
if envs.VLLM_USE_V1:
_stop_basic(vllm_model)
else:
_set_async_mode(vllm_model, True)
_stop_basic(vllm_model)
_set_async_mode(vllm_model, False)
_stop_basic(vllm_model)
if envs.VLLM_USE_V1:
_stop_multi_tokens(vllm_model)
else:
_set_async_mode(vllm_model, True)
_stop_multi_tokens(vllm_model)
_set_async_mode(vllm_model, False)
_stop_multi_tokens(vllm_model)
if envs.VLLM_USE_V1:
_stop_partial_token(vllm_model)
else:
_set_async_mode(vllm_model, True)
_stop_partial_token(vllm_model)
_set_async_mode(vllm_model, False)
_stop_partial_token(vllm_model)
if envs.VLLM_USE_V1:
# FIXME: this does not respect include_in_output=False
# _stop_token_id(vllm_model)
pass
else:
_set_async_mode(vllm_model, True)
_stop_token_id(vllm_model)
_set_async_mode(vllm_model, False)
_stop_token_id(vllm_model)