vllm/tests/detokenizer/test_disable_detokenization.py
Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

36 lines
1.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
from vllm.entrypoints.llm import LLM
from vllm.sampling_params import SamplingParams
@pytest.mark.skip_v1
@pytest.mark.parametrize("model", ["distilbert/distilgpt2"])
def test_computed_prefix_blocks(model: str):
# This test checks if the engine generates completions both with and
# without optional detokenization, that detokenization includes text
# and no-detokenization doesn't, and that both completions have the same
# token_ids.
prompt = (
"You are a helpful assistant. How do I build a car from cardboard and "
"paper clips? Is there an easy to follow video tutorial available "
"online for free?")
llm = LLM(model=model)
sampling_params = SamplingParams(max_tokens=10,
temperature=0.0,
detokenize=False)
outputs_no_detokenization = llm.generate(prompt,
sampling_params)[0].outputs[0]
sampling_params.detokenize = True
outputs_with_detokenization = llm.generate(prompt,
sampling_params)[0].outputs[0]
assert outputs_no_detokenization.text == ''
assert outputs_with_detokenization.text != ''
assert outputs_no_detokenization.token_ids == \
outputs_with_detokenization.token_ids