vllm/cacheflow/master/scheduler.py
2023-02-13 09:37:00 +00:00

198 lines
7.6 KiB
Python

from typing import Dict, List, Tuple
from cacheflow.master.block_manager import BlockSpaceManager
from cacheflow.sequence import Sequence
from cacheflow.sequence import SequenceGroup
from cacheflow.sequence import SequenceStatus
class Scheduler:
def __int__(
self,
controllers: List,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
) -> None:
self.controllers = controllers
self.block_size = block_size
self.num_gpu_blocks = num_gpu_blocks
self.num_cpu_blocks = num_cpu_blocks
# Create the block space manager.
self.block_manager = BlockSpaceManager(
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
)
# Serving sequence groups (FIFO).
self.serving: List[SequenceGroup] = []
# Mapping: group_id -> num_steps.
self.num_steps: Dict[int, int] = {}
# Mapping: group_id -> max_num_steps.
self.max_num_steps: Dict[int, int] = {}
# Mapping: group_id -> stop_token_ids.
self.stop_token_ids: Dict[int, List[int]] = {}
# Swapped sequence groups (LIFO).
self.swapped: List[SequenceGroup] = []
# Pending sequence groups (FIFO).
self.pending: List[SequenceGroup] = []
# Blocks that need to be swaped or copied before model execution.
self.blocks_to_swap_in: Dict[int, int] = []
self.blocks_to_swap_out: Dict[int, int] = []
self.blocks_to_copy: Dict[int, int] = []
def _free_seq(self, seq: Sequence) -> None:
seq.status = SequenceStatus.FINISHED
self.block_manager.free(seq)
def _allocate(self, seq_group: SequenceGroup) -> None:
self.block_manager.allocate(seq_group)
for seq in seq_group.seqs:
seq.status = SequenceStatus.RUNNING
self.serving.append(seq_group)
def _append(self, seq_group: SequenceGroup) -> None:
for seq in seq_group.seqs:
if seq.status == SequenceStatus.FINISHED:
continue
ret = self.block_manager.append(seq)
if ret is not None:
src_block, dst_block = ret
self.blocks_to_copy[src_block] = dst_block
def _swap_in(self, seq_group: SequenceGroup) -> None:
mapping = self.block_manager.swap_in(seq_group)
self.blocks_to_swap_in.update(mapping)
for seq in seq_group.seqs:
if seq.status == SequenceStatus.SWAPPED:
seq.status = SequenceStatus.RUNNING
self.serving.append(seq_group)
def _swap_out(self, seq_group: SequenceGroup) -> None:
assert self.block_manager.can_swap_out(seq_group)
mapping = self.block_manager.swap_out(seq_group)
self.blocks_to_swap_out.update(mapping)
for seq in seq_group.seqs:
if seq.status == SequenceStatus.RUNNING:
seq.status = SequenceStatus.SWAPPED
self.swapped.append(seq_group)
def prepare(self) -> None:
# 1. Prepare new slots for the running sequences.
# NOTE: Here we implicitly assume FCFS scheduling.
# That is, the most recently added sequence group is the first
# to be swapped out.
victim_idx = len(self.serving) - 1
for i, seq_group in enumerate(self.serving):
if i > victim_idx:
# The i-th sequence group has already been swapped out.
break
# OOM. Swap out the victim sequence groups.
while not self.block_manager.can_append(seq_group):
victim_seq_group = self.serving[victim_idx]
self._swap_out(victim_seq_group)
victim_idx -= 1
if i > victim_idx:
# No other sequence groups can be swapped out.
break
else:
self._append(seq_group)
self.serving = self.serving[:victim_idx + 1]
# 2. Swap in the swapped sequences if possible.
# NOTE: Here we implicitly assume FCFS scheduling.
# The swapped sequences are in LIFO order.
for i, seq_group in enumerate(reversed(self.swapped)):
if self.block_manager.can_swap_in(seq_group):
self._swap_in(seq_group)
self._append(seq_group)
else:
# OOM. Stop swapping.
self.swapped = self.swapped[:len(self.swapped) - i]
break
else:
# All swapped sequences are swapped in.
self.swapped.clear()
# 3. Join new sequences if possible.
# NOTE: Here we implicitly assume FCFS scheduling.
# TODO(woosuk): Add a heuristic to control the maximum batch size.
if not self.swapped:
for i, seq_group in enumerate(self.pending):
if self.block_manager.can_allocate(seq_group):
self._allocate(seq_group)
else:
# FIXME: Consider the race condition.
self.pending = self.pending[i:]
break
def step(self) -> None:
# Ensure that either swap-in or swap-out is performed.
if self.blocks_to_swap_in is not None:
assert self.blocks_to_swap_out is None
# Execute the first stage of the pipeline.
self.controllers[0].execute_stage(
self.blocks_to_swap_in.copy(),
self.blocks_to_swap_out.copy(),
self.blocks_to_copy.copy(),
)
# Clear for the next step.
self.blocks_to_swap_in.clear()
self.blocks_to_swap_out.clear()
self.blocks_to_copy.clear()
def post_step(
self,
next_tokens: Dict[int, Tuple[int, int]],
) -> None:
# Update the running sequences and free blocks.
for seq_group in self.serving:
group_id = seq_group.group_id
self.num_steps[group_id] += 1
stop_token_ids = self.stop_token_ids[group_id]
for seq in seq_group.seqs:
if seq.status == SequenceStatus.FINISHED:
continue
parent_seq_id, next_token = next_tokens[seq.seq_id]
if seq.seq_id != parent_seq_id:
# The sequence is a fork of the parent sequence (beam search).
# Free the current sequence.
self.block_manager.free(seq)
# Fork the parent sequence.
parent_seq = seq_group.find(parent_seq_id)
seq.logical_token_blocks = parent_seq.logical_token_blocks.copy()
self.block_manager.fork(parent_seq, seq)
# Append a new token to the sequence.
seq.append(next_token)
# Check if the sequence has generated a stop token.
if next_token in stop_token_ids:
self._free_seq(seq)
continue
# Check if the sequence has reached the maximum number of steps.
if self.num_steps[group_id] == self.max_num_steps[group_id]:
self._free_seq(seq)
continue
# Update the serving states.
serving: List[SequenceGroup] = []
for seq_group in self.serving:
if seq_group.num_seqs(status=SequenceStatus.RUNNING) == 0:
del self.num_steps[seq_group.group_id]
del self.max_num_steps[seq_group.group_id]
del self.stop_token_ids[seq_group.group_id]
# TODO: Return the seq_group to the client.
else:
serving.append(seq_group)
self.serving = serving