vllm/csrc/moe/torch_bindings.cpp
Jinzhen Lin d06ba4ed3f
[Kernel] moe wna16 marlin kernel (#14447)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-14 20:05:22 -07:00

63 lines
2.5 KiB
C++

#include "core/registration.h"
#include "moe_ops.h"
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
// Apply topk softmax to the gating outputs.
m.def(
"topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
"token_expert_indices, Tensor gating_output) -> ()");
m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
// Calculate the result of moe by summing up the partial results
// from all selected experts.
m.def("moe_sum(Tensor! input, Tensor output) -> ()");
m.impl("moe_sum", torch::kCUDA, &moe_sum);
// Aligning the number of tokens to be processed by each expert such
// that it is divisible by the block size.
m.def(
"moe_align_block_size(Tensor topk_ids, int num_experts,"
" int block_size, Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
// temporarily adapted from
// https://github.com/sgl-project/sglang/commit/ded9fcd09a43d5e7d5bb31a2bc3e9fc21bf65d2a
m.def(
"sgl_moe_align_block_size(Tensor topk_ids, int num_experts,"
" int block_size, Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
m.impl("sgl_moe_align_block_size", torch::kCUDA, &sgl_moe_align_block_size);
#ifndef USE_ROCM
m.def(
"moe_wna16_gemm(Tensor input, Tensor! output, Tensor b_qweight, "
"Tensor b_scales, Tensor? b_qzeros, "
"Tensor? topk_weights, Tensor sorted_token_ids, "
"Tensor expert_ids, Tensor num_tokens_post_pad, "
"int top_k, int BLOCK_SIZE_M, int BLOCK_SIZE_N, int BLOCK_SIZE_K, "
"int bit) -> Tensor");
m.impl("moe_wna16_gemm", torch::kCUDA, &moe_wna16_gemm);
m.def(
"moe_wna16_marlin_gemm(Tensor! a, Tensor? c_or_none,"
"Tensor! b_q_weight, Tensor! b_scales, Tensor? b_zeros_or_none,"
"Tensor? g_idx_or_none, Tensor? perm_or_none, Tensor! workspace,"
"Tensor sorted_token_ids,"
"Tensor! expert_ids, Tensor! num_tokens_past_padded,"
"Tensor! topk_weights, int moe_block_size, int top_k, "
"bool mul_topk_weights, bool is_ep, int b_q_type_id,"
"int size_m, int size_n, int size_k,"
"bool is_full_k, bool use_atomic_add,"
"bool use_fp32_reduce, bool is_zp_float) -> Tensor");
// conditionally compiled so impl registration is in source file
#endif
}
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)