63 lines
1.7 KiB
Python
63 lines
1.7 KiB
Python
import os
|
|
import subprocess
|
|
|
|
from PIL import Image
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.multimodal.image import ImagePixelData
|
|
|
|
|
|
def run_phi3v():
|
|
model_path = "microsoft/Phi-3-vision-128k-instruct"
|
|
|
|
# Note: The default setting of max_num_seqs (256) and
|
|
# max_model_len (128k) for this model may cause OOM.
|
|
# In this example, we override max_num_seqs to 5 while
|
|
# keeping the original context length of 128k.
|
|
llm = LLM(
|
|
model=model_path,
|
|
trust_remote_code=True,
|
|
image_input_type="pixel_values",
|
|
image_token_id=32044,
|
|
image_input_shape="1,3,1008,1344",
|
|
image_feature_size=1921,
|
|
max_num_seqs=5,
|
|
)
|
|
|
|
image = Image.open("images/cherry_blossom.jpg")
|
|
|
|
# single-image prompt
|
|
prompt = "<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n" # noqa: E501
|
|
prompt = prompt.replace("<|image_1|>", "<|image|>" * 1921 + "<s>")
|
|
|
|
sampling_params = SamplingParams(temperature=0, max_tokens=64)
|
|
|
|
outputs = llm.generate(
|
|
{
|
|
"prompt": prompt,
|
|
"multi_modal_data": ImagePixelData(image),
|
|
},
|
|
sampling_params=sampling_params)
|
|
for o in outputs:
|
|
generated_text = o.outputs[0].text
|
|
print(generated_text)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
s3_bucket_path = "s3://air-example-data-2/vllm_opensource_llava/"
|
|
local_directory = "images"
|
|
|
|
# Make sure the local directory exists or create it
|
|
os.makedirs(local_directory, exist_ok=True)
|
|
|
|
# Use AWS CLI to sync the directory, assume anonymous access
|
|
subprocess.check_call([
|
|
"aws",
|
|
"s3",
|
|
"sync",
|
|
s3_bucket_path,
|
|
local_directory,
|
|
"--no-sign-request",
|
|
])
|
|
run_phi3v()
|