vllm/benchmarks/kernels/benchmark_mixtral_moe.py
Philipp Moritz cfc15a1031
Optimize Triton MoE Kernel (#2979)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-02-26 13:48:56 -08:00

173 lines
4.8 KiB
Python

import json
import os
import sys
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from vllm.model_executor.layers.fused_moe import fused_moe
import torch
import torch.nn.functional as F
import triton
def main():
method = fused_moe
for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
run_grid(bs, method=method)
def run_grid(bs, method):
d_model = 4096
num_total_experts = 8
top_k = 2
tp_size = 2
model_intermediate_size = 14336
num_layers = 32
num_calls = 100
num_warmup_trials = 1
num_trials = 1
configs = []
if bs <= 16:
BLOCK_SIZES_M = [16]
elif bs <= 32:
BLOCK_SIZES_M = [16, 32]
elif bs <= 64:
BLOCK_SIZES_M = [16, 32, 64]
elif bs <= 128:
BLOCK_SIZES_M = [16, 32, 64, 128]
else:
BLOCK_SIZES_M = [16, 32, 64, 128, 256]
for block_size_n in [32, 64, 128, 256]:
for block_size_m in BLOCK_SIZES_M:
for block_size_k in [64, 128, 256]:
for group_size_m in [1, 16, 32, 64]:
for num_warps in [4, 8]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": 4,
})
best_config = None
best_time_us = 1e20
for config in configs:
print(f'{tp_size=} {bs=}')
print(f'{config}')
# warmup
print(f'warming up')
try:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
)
except triton.runtime.autotuner.OutOfResources:
continue
# trial
print(f'benchmarking')
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
)
kernel_dur_us = 1000 * kernel_dur_ms
model_dur_ms = kernel_dur_ms * num_layers
if kernel_dur_us < best_time_us:
best_config = config
best_time_us = kernel_dur_us
print(
f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f} {bs=} {tp_size=} {top_k=} {num_total_experts=} {d_model=} {model_intermediate_size=} {num_layers=}'
)
print("best_time_us", best_time_us)
print("best_config", best_config)
filename = "/tmp/config.jsonl"
print(f"writing config to file {filename}")
with open(filename, "a") as f:
f.write(json.dumps({str(bs): best_config}) + "\n")
def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
top_k: int, tp_size: int, model_intermediate_size: int, method,
config) -> float:
shard_intermediate_size = model_intermediate_size // tp_size
hidden_states = torch.rand(
(bs, d_model),
device="cuda:0",
dtype=torch.bfloat16,
)
ws = torch.rand(
(num_total_experts, 2 * shard_intermediate_size, d_model),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w2s = torch.rand(
(num_total_experts, d_model, shard_intermediate_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
gating_output = F.softmax(torch.rand(
(num_calls, bs, num_total_experts),
device=hidden_states.device,
dtype=torch.float32,
),
dim=-1)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for i in range(num_calls):
hidden_states = method(
hidden_states=hidden_states,
w1=ws,
w2=w2s,
gating_output=gating_output[i],
topk=2,
renormalize=True,
inplace=True,
override_config=config,
)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
sys.exit(main())