168 lines
5.9 KiB
Python
168 lines
5.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.v1.sample.metadata import SamplingMetadata
|
|
from vllm.v1.sample.rejection_sampler import INVALID_TOKEN_ID, RejectionSampler
|
|
|
|
|
|
@pytest.fixture
|
|
def sampler():
|
|
return RejectionSampler()
|
|
|
|
|
|
def create_logits_tensor(token_ids: list[int],
|
|
vocab_size: int = 100) -> torch.Tensor:
|
|
"""Helper function to create logits tensor that
|
|
will produce desired token ids on argmax"""
|
|
logits = torch.full((len(token_ids), vocab_size), -100.0).cuda()
|
|
for i, token_id in enumerate(token_ids):
|
|
logits[i, token_id] = 100.0
|
|
return logits
|
|
|
|
|
|
def create_sampling_metadata(spec_tokens: list[list[int]]) -> SamplingMetadata:
|
|
batch_size = len(spec_tokens)
|
|
return SamplingMetadata(
|
|
temperature=torch.tensor([]),
|
|
all_greedy=True,
|
|
all_random=False,
|
|
top_p=None,
|
|
top_k=None,
|
|
min_p=torch.empty(batch_size, ),
|
|
generators={},
|
|
max_num_logprobs=0,
|
|
no_penalties=False,
|
|
prompt_token_ids=None,
|
|
frequency_penalties=torch.tensor([]),
|
|
presence_penalties=torch.tensor([]),
|
|
repetition_penalties=torch.tensor([]),
|
|
output_token_ids=[],
|
|
min_tokens={},
|
|
logit_bias=[None] * batch_size,
|
|
allowed_token_ids_mask=None,
|
|
)
|
|
|
|
|
|
def test_perfect_match(sampler):
|
|
"""Test when output tokens perfectly match speculated tokens"""
|
|
spec_tokens = [[1, 2, 3]]
|
|
output_tokens = [1, 2, 3, 4] # 4 is the bonus token
|
|
|
|
metadata = create_sampling_metadata(spec_tokens)
|
|
logits = create_logits_tensor(output_tokens)
|
|
|
|
output = sampler(spec_tokens, logits, metadata)
|
|
expected = torch.tensor([[1, 2, 3, 4]],
|
|
dtype=torch.int,
|
|
device=logits.device)
|
|
assert torch.equal(output.sampled_token_ids, expected)
|
|
|
|
|
|
def test_early_mismatch(sampler):
|
|
"""Test when there's an early mismatch in tokens"""
|
|
spec_tokens = [[1, 2, 3]]
|
|
output_tokens = [1, 5, 3, 4] # Mismatch at position 1
|
|
|
|
metadata = create_sampling_metadata(spec_tokens)
|
|
logits = create_logits_tensor(output_tokens)
|
|
|
|
output = sampler(spec_tokens, logits, metadata)
|
|
expected = torch.tensor([[1, 5, INVALID_TOKEN_ID, INVALID_TOKEN_ID]],
|
|
dtype=torch.int,
|
|
device=logits.device)
|
|
assert torch.equal(output.sampled_token_ids, expected)
|
|
|
|
|
|
def test_multiple_sequences(sampler):
|
|
"""Test handling multiple sequences of speculated tokens"""
|
|
spec_tokens = [[1, 2], [3]]
|
|
output_tokens = [1, 2, 5, 3, 4] # Two sequences with bonus tokens 5 and 4
|
|
|
|
metadata = create_sampling_metadata(spec_tokens)
|
|
logits = create_logits_tensor(output_tokens)
|
|
|
|
output = sampler(spec_tokens, logits, metadata)
|
|
expected = torch.tensor([[1, 2, 5], [3, 4, INVALID_TOKEN_ID]],
|
|
dtype=torch.int,
|
|
device=logits.device)
|
|
assert torch.equal(output.sampled_token_ids, expected)
|
|
|
|
|
|
def test_single_token_sequence(sampler):
|
|
"""Test handling sequences with single token"""
|
|
spec_tokens = [[1]]
|
|
output_tokens = [1, 2] # Single token with bonus token 2
|
|
|
|
metadata = create_sampling_metadata(spec_tokens)
|
|
logits = create_logits_tensor(output_tokens)
|
|
|
|
output = sampler(spec_tokens, logits, metadata)
|
|
expected = torch.tensor([[1, 2]], dtype=torch.int, device=logits.device)
|
|
assert torch.equal(output.sampled_token_ids, expected)
|
|
|
|
|
|
def test_empty_sequence(sampler):
|
|
"""Test handling empty sequence of speculated tokens"""
|
|
spec_tokens: list[list[int]] = [[]]
|
|
output_tokens = [5] # Just the bonus token
|
|
|
|
metadata = create_sampling_metadata(spec_tokens)
|
|
logits = create_logits_tensor(output_tokens)
|
|
|
|
output = sampler(spec_tokens, logits, metadata)
|
|
expected = torch.tensor([[5]], dtype=torch.int, device=logits.device)
|
|
assert torch.equal(output.sampled_token_ids, expected)
|
|
|
|
|
|
def test_multiple_mismatches(sampler):
|
|
"""Test handling multiple sequences with mismatches"""
|
|
spec_tokens = [[1, 2, 3], [4, 5, 6]]
|
|
output_tokens = [1, 2, 7, 6, 4, 8, 6, 9] # Mismatches in both sequences
|
|
|
|
metadata = create_sampling_metadata(spec_tokens)
|
|
logits = create_logits_tensor(output_tokens)
|
|
|
|
output = sampler(spec_tokens, logits, metadata)
|
|
expected = torch.tensor([[1, 2, 7, INVALID_TOKEN_ID],
|
|
[4, 8, INVALID_TOKEN_ID, INVALID_TOKEN_ID]],
|
|
dtype=torch.int,
|
|
device=logits.device)
|
|
assert torch.equal(output.sampled_token_ids, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"spec_tokens,output_tokens,expected",
|
|
[
|
|
([[1, 2]], [1, 2, 3], [[1, 2, 3]]), # Perfect match with bonus
|
|
([[1]], [2, 3], [[2, INVALID_TOKEN_ID]]), # First mismatch
|
|
([[1, 2], [3, 4]], [1, 5, 6, 3, 4, 7], [[1, 5, INVALID_TOKEN_ID],
|
|
[3, 4, 7]]), # Mixed matches
|
|
])
|
|
def test_parametrized_cases(sampler, spec_tokens, output_tokens, expected):
|
|
"""Parametrized test for various matching scenarios"""
|
|
metadata = create_sampling_metadata(spec_tokens)
|
|
logits = create_logits_tensor(output_tokens)
|
|
|
|
output = sampler(spec_tokens, logits, metadata)
|
|
expected_tensor = torch.tensor(expected,
|
|
dtype=torch.int,
|
|
device=logits.device)
|
|
assert torch.equal(output.sampled_token_ids, expected_tensor)
|
|
|
|
|
|
def test_logits_shape_handling(sampler):
|
|
"""Test handling of different logits tensor shapes"""
|
|
spec_tokens = [[1, 2]]
|
|
output_tokens = [1, 2, 3]
|
|
vocab_size = 1000
|
|
|
|
metadata = create_sampling_metadata(spec_tokens)
|
|
logits = create_logits_tensor(output_tokens, vocab_size)
|
|
|
|
output = sampler(spec_tokens, logits, metadata)
|
|
expected = torch.tensor([[1, 2, 3]], dtype=torch.int, device=logits.device)
|
|
assert torch.equal(output.sampled_token_ids, expected)
|
|
assert logits.shape[-1] == vocab_size
|