vllm/tests/lora/test_jamba.py
2025-03-02 17:34:51 -08:00

55 lines
1.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
import vllm
from vllm.lora.request import LoRARequest
MODEL_PATH = "ai21labs/AI21-Jamba-1.5-Mini"
MAX_TOKENS = 40
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int,
prompts: list[str]) -> list[str]:
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=MAX_TOKENS)
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None)
# Print the outputs.
generated_texts: list[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
return generated_texts
@pytest.mark.parametrize("tp_size", [4])
def test_jamba_lora(jamba_lora_files, tp_size):
"""Original test, the LoRA model has the common target modules, not all"""
if torch.cuda.device_count() < tp_size:
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
prompts = ["Write a story about a sheep and a goat."]
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
distributed_executor_backend="ray",
tensor_parallel_size=tp_size,
)
expected_jamba_output = [
"""Once upon a time, in a lush green meadow, there lived a sheep named Clara and a goat named Billy. Clara was a gentle creature, always nibbling on the soft grass and humming""" # noqa: E501
]
assert do_sample(llm, jamba_lora_files, lora_id=1,
prompts=prompts) == expected_jamba_output