327 lines
12 KiB
Python
327 lines
12 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import subprocess
|
|
import sys
|
|
import tempfile
|
|
import time
|
|
from http import HTTPStatus
|
|
|
|
import openai
|
|
import pytest
|
|
import pytest_asyncio
|
|
import requests
|
|
from prometheus_client.parser import text_string_to_metric_families
|
|
from transformers import AutoTokenizer
|
|
|
|
from ...utils import RemoteOpenAIServer
|
|
|
|
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
|
|
|
|
@pytest.fixture(scope="module", params=[True, False])
|
|
def use_v1(request):
|
|
# Module-scoped variant of run_with_both_engines
|
|
#
|
|
# Use this fixture to run a test with both v0 and v1, and
|
|
# also to conditionalize the test logic e.g.
|
|
#
|
|
# def test_metrics_exist(use_v1, server, client):
|
|
# ...
|
|
# expected = EXPECTED_V1_METRICS if use_v1 else EXPECTED_METRICS
|
|
# for metric in expected:
|
|
# assert metric in response.text
|
|
#
|
|
# @skip_v1 wouldn't work here because this is a module-level
|
|
# fixture - per-function decorators would have no effect
|
|
yield request.param
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def default_server_args():
|
|
return [
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--max-model-len",
|
|
"1024",
|
|
"--enforce-eager",
|
|
"--max-num-seqs",
|
|
"128",
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module",
|
|
params=[
|
|
"",
|
|
"--enable-chunked-prefill",
|
|
"--disable-frontend-multiprocessing",
|
|
])
|
|
def server(use_v1, default_server_args, request):
|
|
if request.param:
|
|
default_server_args.append(request.param)
|
|
env_dict = dict(VLLM_USE_V1='1' if use_v1 else '0')
|
|
with RemoteOpenAIServer(MODEL_NAME, default_server_args,
|
|
env_dict=env_dict) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(server):
|
|
async with server.get_async_client() as cl:
|
|
yield cl
|
|
|
|
|
|
_PROMPT = "Hello my name is Robert and I love magic"
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
_TOKENIZED_PROMPT = tokenizer(_PROMPT)["input_ids"]
|
|
|
|
_NUM_REQUESTS = 10
|
|
_NUM_PROMPT_TOKENS_PER_REQUEST = len(_TOKENIZED_PROMPT)
|
|
_NUM_GENERATION_TOKENS_PER_REQUEST = 10
|
|
|
|
# {metric_family: [(suffix, expected_value)]}
|
|
EXPECTED_VALUES = {
|
|
"vllm:time_to_first_token_seconds": [("_count", _NUM_REQUESTS)],
|
|
"vllm:time_per_output_token_seconds":
|
|
[("_count", _NUM_REQUESTS * (_NUM_GENERATION_TOKENS_PER_REQUEST - 1))],
|
|
"vllm:e2e_request_latency_seconds": [("_count", _NUM_REQUESTS)],
|
|
"vllm:request_queue_time_seconds": [("_count", _NUM_REQUESTS)],
|
|
"vllm:request_inference_time_seconds": [("_count", _NUM_REQUESTS)],
|
|
"vllm:request_prefill_time_seconds": [("_count", _NUM_REQUESTS)],
|
|
"vllm:request_decode_time_seconds": [("_count", _NUM_REQUESTS)],
|
|
"vllm:request_prompt_tokens":
|
|
[("_sum", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST),
|
|
("_count", _NUM_REQUESTS)],
|
|
"vllm:request_generation_tokens":
|
|
[("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST),
|
|
("_count", _NUM_REQUESTS)],
|
|
"vllm:request_params_n": [("_count", _NUM_REQUESTS)],
|
|
"vllm:request_params_max_tokens": [
|
|
("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST),
|
|
("_count", _NUM_REQUESTS)
|
|
],
|
|
"vllm:iteration_tokens_total":
|
|
[("_sum", _NUM_REQUESTS *
|
|
(_NUM_PROMPT_TOKENS_PER_REQUEST + _NUM_GENERATION_TOKENS_PER_REQUEST)),
|
|
("_count", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST)],
|
|
"vllm:prompt_tokens": [("_total",
|
|
_NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)],
|
|
"vllm:generation_tokens": [
|
|
("_total", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)
|
|
],
|
|
"vllm:request_success": [("_total", _NUM_REQUESTS)],
|
|
}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_metrics_counts(server: RemoteOpenAIServer,
|
|
client: openai.AsyncClient, use_v1: bool):
|
|
for _ in range(_NUM_REQUESTS):
|
|
# sending a request triggers the metrics to be logged.
|
|
await client.completions.create(
|
|
model=MODEL_NAME,
|
|
prompt=_TOKENIZED_PROMPT,
|
|
max_tokens=_NUM_GENERATION_TOKENS_PER_REQUEST)
|
|
|
|
response = requests.get(server.url_for("metrics"))
|
|
print(response.text)
|
|
assert response.status_code == HTTPStatus.OK
|
|
|
|
# Loop over all expected metric_families
|
|
for metric_family, suffix_values_list in EXPECTED_VALUES.items():
|
|
if use_v1 and metric_family not in EXPECTED_METRICS_V1:
|
|
continue
|
|
|
|
found_metric = False
|
|
|
|
# Check to see if the metric_family is found in the prom endpoint.
|
|
for family in text_string_to_metric_families(response.text):
|
|
if family.name == metric_family:
|
|
found_metric = True
|
|
|
|
# Check that each suffix is found in the prom endpoint.
|
|
for suffix, expected_value in suffix_values_list:
|
|
metric_name_w_suffix = f"{metric_family}{suffix}"
|
|
found_suffix = False
|
|
|
|
for sample in family.samples:
|
|
if sample.name == metric_name_w_suffix:
|
|
found_suffix = True
|
|
|
|
# For each suffix, value sure the value matches
|
|
# what we expect.
|
|
assert sample.value == expected_value, (
|
|
f"{metric_name_w_suffix} expected value of "
|
|
f"{expected_value} did not match found value "
|
|
f"{sample.value}")
|
|
break
|
|
assert found_suffix, (
|
|
f"Did not find {metric_name_w_suffix} in prom endpoint"
|
|
)
|
|
break
|
|
|
|
assert found_metric, (f"Did not find {metric_family} in prom endpoint")
|
|
|
|
|
|
EXPECTED_METRICS = [
|
|
"vllm:num_requests_running",
|
|
"vllm:num_requests_swapped",
|
|
"vllm:num_requests_waiting",
|
|
"vllm:gpu_cache_usage_perc",
|
|
"vllm:cpu_cache_usage_perc",
|
|
"vllm:time_to_first_token_seconds_sum",
|
|
"vllm:time_to_first_token_seconds_bucket",
|
|
"vllm:time_to_first_token_seconds_count",
|
|
"vllm:time_per_output_token_seconds_sum",
|
|
"vllm:time_per_output_token_seconds_bucket",
|
|
"vllm:time_per_output_token_seconds_count",
|
|
"vllm:e2e_request_latency_seconds_sum",
|
|
"vllm:e2e_request_latency_seconds_bucket",
|
|
"vllm:e2e_request_latency_seconds_count",
|
|
"vllm:request_queue_time_seconds_sum",
|
|
"vllm:request_queue_time_seconds_bucket",
|
|
"vllm:request_queue_time_seconds_count",
|
|
"vllm:request_inference_time_seconds_sum",
|
|
"vllm:request_inference_time_seconds_bucket",
|
|
"vllm:request_inference_time_seconds_count",
|
|
"vllm:request_prefill_time_seconds_sum",
|
|
"vllm:request_prefill_time_seconds_bucket",
|
|
"vllm:request_prefill_time_seconds_count",
|
|
"vllm:request_decode_time_seconds_sum",
|
|
"vllm:request_decode_time_seconds_bucket",
|
|
"vllm:request_decode_time_seconds_count",
|
|
"vllm:request_prompt_tokens_sum",
|
|
"vllm:request_prompt_tokens_bucket",
|
|
"vllm:request_prompt_tokens_count",
|
|
"vllm:request_generation_tokens_sum",
|
|
"vllm:request_generation_tokens_bucket",
|
|
"vllm:request_generation_tokens_count",
|
|
"vllm:request_params_n_sum",
|
|
"vllm:request_params_n_bucket",
|
|
"vllm:request_params_n_count",
|
|
"vllm:request_params_max_tokens_sum",
|
|
"vllm:request_params_max_tokens_bucket",
|
|
"vllm:request_params_max_tokens_count",
|
|
"vllm:iteration_tokens_total",
|
|
"vllm:num_preemptions_total",
|
|
"vllm:prompt_tokens_total",
|
|
"vllm:generation_tokens_total",
|
|
"vllm:request_success_total",
|
|
"vllm:cache_config_info",
|
|
# labels in cache_config_info
|
|
"block_size",
|
|
"cache_dtype",
|
|
"cpu_offload_gb",
|
|
"enable_prefix_caching",
|
|
"gpu_memory_utilization",
|
|
"num_cpu_blocks",
|
|
"num_gpu_blocks",
|
|
"num_gpu_blocks_override",
|
|
"sliding_window",
|
|
"swap_space_bytes",
|
|
]
|
|
|
|
EXPECTED_METRICS_V1 = [
|
|
"vllm:num_requests_running",
|
|
"vllm:num_requests_waiting",
|
|
"vllm:gpu_cache_usage_perc",
|
|
"vllm:gpu_prefix_cache_queries",
|
|
"vllm:gpu_prefix_cache_hits",
|
|
"vllm:num_preemptions_total",
|
|
"vllm:prompt_tokens_total",
|
|
"vllm:generation_tokens_total",
|
|
"vllm:iteration_tokens_total",
|
|
"vllm:cache_config_info",
|
|
"vllm:request_success_total",
|
|
"vllm:request_prompt_tokens_sum",
|
|
"vllm:request_prompt_tokens_bucket",
|
|
"vllm:request_prompt_tokens_count",
|
|
"vllm:request_generation_tokens_sum",
|
|
"vllm:request_generation_tokens_bucket",
|
|
"vllm:request_generation_tokens_count",
|
|
"vllm:time_to_first_token_seconds_sum",
|
|
"vllm:time_to_first_token_seconds_bucket",
|
|
"vllm:time_to_first_token_seconds_count",
|
|
"vllm:time_per_output_token_seconds_sum",
|
|
"vllm:time_per_output_token_seconds_bucket",
|
|
"vllm:time_per_output_token_seconds_count",
|
|
"vllm:e2e_request_latency_seconds_sum",
|
|
"vllm:e2e_request_latency_seconds_bucket",
|
|
"vllm:e2e_request_latency_seconds_count",
|
|
"vllm:request_queue_time_seconds_sum",
|
|
"vllm:request_queue_time_seconds_bucket",
|
|
"vllm:request_queue_time_seconds_count",
|
|
"vllm:request_inference_time_seconds_sum",
|
|
"vllm:request_inference_time_seconds_bucket",
|
|
"vllm:request_inference_time_seconds_count",
|
|
"vllm:request_prefill_time_seconds_sum",
|
|
"vllm:request_prefill_time_seconds_bucket",
|
|
"vllm:request_prefill_time_seconds_count",
|
|
"vllm:request_decode_time_seconds_sum",
|
|
"vllm:request_decode_time_seconds_bucket",
|
|
"vllm:request_decode_time_seconds_count",
|
|
]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_metrics_exist(server: RemoteOpenAIServer,
|
|
client: openai.AsyncClient, use_v1: bool):
|
|
# sending a request triggers the metrics to be logged.
|
|
await client.completions.create(model=MODEL_NAME,
|
|
prompt="Hello, my name is",
|
|
max_tokens=5,
|
|
temperature=0.0)
|
|
|
|
response = requests.get(server.url_for("metrics"))
|
|
assert response.status_code == HTTPStatus.OK
|
|
|
|
for metric in (EXPECTED_METRICS_V1 if use_v1 else EXPECTED_METRICS):
|
|
assert metric in response.text
|
|
|
|
|
|
def test_metrics_exist_run_batch(use_v1: bool):
|
|
if use_v1:
|
|
pytest.skip("Skipping test on vllm V1")
|
|
input_batch = """{"custom_id": "request-0", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "You are a helpful assistant."}}""" # noqa: E501
|
|
|
|
base_url = "0.0.0.0"
|
|
port = "8001"
|
|
server_url = f"http://{base_url}:{port}"
|
|
|
|
with tempfile.NamedTemporaryFile(
|
|
"w") as input_file, tempfile.NamedTemporaryFile(
|
|
"r") as output_file:
|
|
input_file.write(input_batch)
|
|
input_file.flush()
|
|
proc = subprocess.Popen([
|
|
sys.executable,
|
|
"-m",
|
|
"vllm.entrypoints.openai.run_batch",
|
|
"-i",
|
|
input_file.name,
|
|
"-o",
|
|
output_file.name,
|
|
"--model",
|
|
"intfloat/multilingual-e5-small",
|
|
"--enable-metrics",
|
|
"--url",
|
|
base_url,
|
|
"--port",
|
|
port,
|
|
], )
|
|
|
|
def is_server_up(url):
|
|
try:
|
|
response = requests.get(url)
|
|
return response.status_code == 200
|
|
except requests.ConnectionError:
|
|
return False
|
|
|
|
while not is_server_up(server_url):
|
|
time.sleep(1)
|
|
|
|
response = requests.get(server_url + "/metrics")
|
|
assert response.status_code == HTTPStatus.OK
|
|
|
|
proc.wait()
|