vllm/tests/compile/piecewise/test_toy_llama.py
2025-03-02 17:34:51 -08:00

449 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""
Test the piecewise compilation with a simple model, comparing the output
with and without the piecewise compilation.
This is a tractable model, the weights and computation are specially designed
if the config `tractable_init` is set to True. Otherwise, the weights are
initialized randomly with a fixed seed.
"""
from dataclasses import dataclass
from typing import Any, Optional
import torch
from torch import nn
from torch.library import Library
from vllm.compilation.counter import compilation_counter
from vllm.compilation.decorators import support_torch_compile
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
set_current_vllm_config)
from vllm.utils import direct_register_custom_op
# create a library to hold the custom op
silly_lib = Library("silly", "FRAGMENT") # noqa
def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
out: torch.Tensor) -> None:
out.copy_(q)
out += k
out += v
def silly_attention_fake(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
out: torch.Tensor) -> None:
return
direct_register_custom_op(
op_name="attention",
op_func=silly_attention,
mutates_args=["out"],
fake_impl=silly_attention_fake,
target_lib=silly_lib,
)
@dataclass
class LlamaConfig:
hidden_size: int = 128
mlp_size: int = 256
vocab_size: int = 128
num_layers: int = 2
init_value: float = 1.0
tractable_init: bool = False
random_seed: int = 0
def compute_hash(self) -> str:
factors: list[Any] = []
for k, v in self.__dict__.items():
if k == "random_seed":
continue
factors.append((k, v))
factors.sort()
import hashlib
return hashlib.md5(str(factors).encode()).hexdigest()
def __post_init__(self):
assert self.mlp_size >= self.hidden_size
class LlamaMLP(nn.Module):
def __init__(self, config: LlamaConfig) -> None:
super().__init__()
self.gate_up_projection = nn.Linear(
in_features=config.hidden_size,
out_features=config.mlp_size * 2,
bias=False,
)
self.down_projection = nn.Linear(
in_features=config.mlp_size,
out_features=config.hidden_size,
bias=False,
)
if config.tractable_init:
nn.init.eye_(self.gate_up_projection.weight.data[:config.mlp_size])
nn.init.eye_(self.gate_up_projection.weight.data[config.mlp_size:])
nn.init.eye_(self.down_projection.weight.data)
else:
nn.init.xavier_normal_(self.gate_up_projection.weight.data,
generator=torch.Generator().manual_seed(
config.random_seed),
gain=0.001)
nn.init.xavier_normal_(self.down_projection.weight.data,
generator=torch.Generator().manual_seed(
config.random_seed),
gain=0.001)
def forward(self, x):
# for tractable_init and positive input, this is
# essentially an elementwise-square
x = self.gate_up_projection(x)
x = x[:, :x.size(1) // 2] * torch.nn.functional.relu(
x[:, x.size(1) // 2:])
x = self.down_projection(x)
return x
class LlamaAttention(nn.Module):
def __init__(self, config: LlamaConfig) -> None:
super().__init__()
self.qkv_projection = nn.Linear(
in_features=config.hidden_size,
out_features=config.hidden_size * 3,
bias=False,
)
self.output_projection = nn.Linear(
in_features=config.hidden_size,
out_features=config.hidden_size,
bias=False,
)
if config.tractable_init:
nn.init.eye_(self.qkv_projection.weight.data[:config.hidden_size])
nn.init.eye_(self.qkv_projection.weight.data[config.hidden_size:2 *
config.hidden_size])
nn.init.eye_(self.qkv_projection.weight.data[2 *
config.hidden_size:])
nn.init.eye_(self.output_projection.weight.data)
else:
nn.init.xavier_normal_(self.qkv_projection.weight.data,
generator=torch.Generator().manual_seed(
config.random_seed),
gain=0.001)
nn.init.xavier_normal_(self.output_projection.weight.data,
generator=torch.Generator().manual_seed(
config.random_seed),
gain=0.001)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
# for tractable_init, this is:
# output = (hidden_states * 3 + positions * 2)
qkv = self.qkv_projection(hidden_states)
hidden_size = qkv.size(-1) // 3
q, k, v = qkv.split([hidden_size, hidden_size, hidden_size], dim=-1)
q = q + positions.unsqueeze(1)
k = k + positions.unsqueeze(1)
attn_output = torch.empty_like(q)
torch.ops.silly.attention(q, k, v, attn_output)
output = self.output_projection(attn_output)
return output
class LlamaDecoderLayer(nn.Module):
def __init__(self, config: LlamaConfig) -> None:
super().__init__()
self.self_attention = LlamaAttention(config)
self.mlp = LlamaMLP(config)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
"""
For tractable computation:
- if residual is None, the outputs are:
- residual = (hidden_states + 1) * 3 + positions * 2 + hidden_states = hidden_states * 4 + positions * 2 + 3
- hidden_states = (residual + 1) ** 2
- if residual is not None, the outputs are:
- residual = (hidden_states + residual + 1) * 3 + positions * 2 + hidden_states + residual = (hidden_states + residual) * 4 + positions * 2 + 3
- hidden_states = (residual + 1) ** 2
""" # noqa
if residual is None:
residual = hidden_states
hidden_states = hidden_states + 1
else:
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = hidden_states + 1
hidden_states = self.self_attention(positions=positions,
hidden_states=hidden_states)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = hidden_states + 1
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class LlamaModel(nn.Module):
def __init__(self,
*,
vllm_config: VllmConfig,
config: LlamaConfig,
prefix: str = '',
**kwargs) -> None:
super().__init__()
self.embedding_tokens = nn.Embedding(
num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
)
self.layers = nn.ModuleList(
[LlamaDecoderLayer(config) for _ in range(config.num_layers)])
# this is the initial value of the hidden states
self.embedding_tokens.weight.data.fill_(config.init_value)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.embedding_tokens(input_ids)
residual = None
for layer in self.layers:
hidden_states, residual = layer(positions, hidden_states, residual)
return hidden_states
def tractable_computation(input_ids: torch.Tensor,
positions: torch.Tensor,
config: LlamaConfig,
init_value: float = 1.0) -> torch.Tensor:
hidden_states = torch.ones(input_ids.size(0),
config.hidden_size,
device=input_ids.device,
dtype=input_ids.dtype) * init_value
# first layer
residual = hidden_states * 4 + positions.unsqueeze(1) * 2 + 3
hidden_states = (residual + 1)**2
# following layers
for _ in range(config.num_layers - 1):
hidden_states = hidden_states + residual
residual = hidden_states * 4 + positions.unsqueeze(1) * 2 + 3
hidden_states = (residual + 1)**2
return hidden_states
@torch.inference_mode
def run_model(llama_config,
use_compile: bool,
split_attn: bool = False) -> torch.Tensor:
if use_compile:
compilation_config = CompilationConfig(
level=CompilationLevel.PIECEWISE,
use_cudagraph=True,
cudagraph_capture_sizes=[1, 2],
)
if split_attn:
compilation_config.splitting_ops = ["silly.attention"]
else:
compilation_config = CompilationConfig(
level=CompilationLevel.NO_COMPILATION, )
vllm_config = VllmConfig(compilation_config=compilation_config,
additional_config=llama_config)
with set_current_vllm_config(vllm_config):
model = LlamaModel(config=llama_config,
vllm_config=vllm_config,
prefix="").eval().cuda()
B = 16 # max batch size
input_ids = torch.randint(0, llama_config.vocab_size, (B, )).cuda()
positions = torch.arange(B).cuda()
model(input_ids, positions)
model(input_ids[:2], positions[:2])
model(input_ids[:1], positions[:1])
input_ids[:2].zero_()
output = model(input_ids[:2], positions[:2])
output = output.cpu()
if llama_config.tractable_init:
expected_output = tractable_computation(input_ids[:2], positions[:2],
llama_config).cpu()
assert torch.allclose(output, expected_output)
else:
return output.cpu()
def test_toy_llama():
# compare output with and without piecewise compilation
llama_config = LlamaConfig(hidden_size=128,
mlp_size=256,
vocab_size=128,
num_layers=12)
tractable_config = LlamaConfig(hidden_size=128,
mlp_size=256,
vocab_size=128,
num_layers=2,
tractable_init=True)
outputs = []
with compilation_counter.expect(
num_graphs_seen=0,
num_piecewise_graphs_seen=0,
num_piecewise_capturable_graphs_seen=0,
num_backend_compilations=0,
num_cudagraph_caputured=0,
):
outputs.append(run_model(llama_config, use_compile=False))
run_model(tractable_config, use_compile=False)
with compilation_counter.expect(
num_graphs_seen=1, # one graph for the model
num_piecewise_graphs_seen=1,
num_piecewise_capturable_graphs_seen=1,
num_backend_compilations=1, # num_piecewise_capturable_graphs_seen
num_cudagraph_caputured=
2, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
):
outputs.append(run_model(llama_config, use_compile=True))
run_model(tractable_config, use_compile=True)
with compilation_counter.expect(
num_graphs_seen=1, # one graph for the model
num_piecewise_graphs_seen=2 * llama_config.num_layers +
1, # 2 * num_layers + 1
num_piecewise_capturable_graphs_seen=1 +
llama_config.num_layers, # 1 + num_layers
num_backend_compilations=1 +
llama_config.num_layers, # num_piecewise_capturable_graphs_seen
num_cudagraph_caputured=2 *
(1 + llama_config.num_layers
), # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
):
outputs.append(
run_model(llama_config, use_compile=True, split_attn=True))
run_model(tractable_config, use_compile=True, split_attn=True)
for i in range(1, len(outputs)):
assert torch.allclose(outputs[0], outputs[i])
@torch.inference_mode
def benchmark():
from triton.testing import do_bench
# similar to llama 3.1-8B
llama_config = LlamaConfig(hidden_size=4096,
mlp_size=14336,
vocab_size=128 * 1024,
num_layers=32)
# a tiny model to measure the overhead
# of piecewise cudagraph
llama_config = LlamaConfig(hidden_size=40,
mlp_size=80,
vocab_size=128,
num_layers=2)
cudagraph_sizes = [1, 2, 4] + [i * 8 for i in range(1, 33)]
eager_time = {}
full_cudagraph_time = {}
piecewise_cudagraph_time = {}
pool = torch.cuda.graph_pool_handle()
for piecewise in [False, True]:
if piecewise:
compilation_config = CompilationConfig(
level=CompilationLevel.PIECEWISE,
use_cudagraph=True,
splitting_ops=["silly.attention"],
cudagraph_capture_sizes=cudagraph_sizes,
)
else:
compilation_config = CompilationConfig(
level=CompilationLevel.PIECEWISE,
cudagraph_capture_sizes=cudagraph_sizes,
)
vllm_config = VllmConfig(compilation_config=compilation_config)
with set_current_vllm_config(vllm_config):
model = LlamaModel(config=llama_config,
vllm_config=vllm_config,
prefix="").eval().cuda().to(torch.bfloat16)
B = 256 # max batch size
input_ids = torch.randint(0, llama_config.vocab_size, (B, )).cuda()
positions = torch.arange(B).cuda().to(torch.bfloat16)
graphs = {}
model(input_ids, positions)
for b in cudagraph_sizes[::-1]:
if not piecewise:
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, pool=pool):
output = model(input_ids[:b], positions[:b])
graphs[b] = (graph, output)
else:
output = model(input_ids[:b], positions[:b])
graphs[b] = (model, output)
for b in cudagraph_sizes:
if piecewise:
# noqa is for `Function definition does not bind loop variable`
# it will be problematic if we save the created lambda function
# and use it later, because it will look up the name `b` in the
# enclosing scope, and the value of `b` will always be 256.
# it is fine here, because we only use the lambda function once.
runtime = do_bench(lambda: graphs[b][0] # noqa
(input_ids[:b], positions[:b])) # noqa
piecewise_cudagraph_time[b] = runtime
else:
runtime = do_bench(lambda: graphs[b][0].replay()) # noqa
eager_runtime = do_bench(
lambda: model(input_ids[:b], positions[:b])) # noqa
full_cudagraph_time[b] = runtime
eager_time[b] = eager_runtime
# print in tabular format
print("batch size\teager mode\tfull cudagraph\tpiecewise cudagraph")
for b in cudagraph_sizes:
print(f"{b}\t{eager_time[b]:.3f}\t{full_cudagraph_time[b]:.3f}"
f"\t{piecewise_cudagraph_time[b]:.3f}")
if __name__ == "__main__":
benchmark()