58 lines
1.7 KiB
Python
58 lines
1.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import gc
|
|
import time
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
|
|
def time_generation(llm: LLM, prompts: list[str],
|
|
sampling_params: SamplingParams):
|
|
# Generate texts from the prompts. The output is a list of RequestOutput
|
|
# objects that contain the prompt, generated text, and other information.
|
|
# Warmup first
|
|
llm.generate(prompts, sampling_params)
|
|
llm.generate(prompts, sampling_params)
|
|
start = time.time()
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
end = time.time()
|
|
print((end - start) / sum([len(o.outputs[0].token_ids) for o in outputs]))
|
|
# Print the outputs.
|
|
for output in outputs:
|
|
generated_text = output.outputs[0].text
|
|
print(f"text: {generated_text!r}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
template = (
|
|
"Below is an instruction that describes a task. Write a response "
|
|
"that appropriately completes the request.\n\n### Instruction:\n{}"
|
|
"\n\n### Response:\n")
|
|
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Write about the president of the United States.",
|
|
]
|
|
prompts = [template.format(prompt) for prompt in prompts]
|
|
# Create a sampling params object.
|
|
sampling_params = SamplingParams(temperature=0.0, max_tokens=200)
|
|
|
|
# Create an LLM without spec decoding
|
|
llm = LLM(model="meta-llama/Llama-2-13b-chat-hf")
|
|
|
|
print("Without speculation")
|
|
time_generation(llm, prompts, sampling_params)
|
|
|
|
del llm
|
|
gc.collect()
|
|
|
|
# Create an LLM with spec decoding
|
|
llm = LLM(
|
|
model="meta-llama/Llama-2-13b-chat-hf",
|
|
speculative_model="ibm-ai-platform/llama-13b-accelerator",
|
|
)
|
|
|
|
print("With speculation")
|
|
time_generation(llm, prompts, sampling_params)
|