
Signed-off-by: KuntaiDu <kuntai@uchicago.edu> Signed-off-by: Kuntai Du <kuntai@uchicago.edu>
254 lines
8.1 KiB
Markdown
254 lines
8.1 KiB
Markdown
(deployment-k8s)=
|
|
|
|
# Using Kubernetes
|
|
|
|
Deploying vLLM on Kubernetes is a scalable and efficient way to serve machine learning models. This guide walks you through deploying vLLM using native Kubernetes.
|
|
|
|
--------
|
|
|
|
Alternatively, you can also deploy Kubernetes using [helm chart](https://docs.vllm.ai/en/latest/deployment/frameworks/helm.html). There are also open-source projects available to make your deployment even smoother.
|
|
|
|
* [vLLM production-stack](https://github.com/vllm-project/production-stack): Born out of a Berkeley-UChicago collaboration, vLLM production stack is a project that contains latest research and community effort, while still delivering production-level stability and performance. Checkout the [documentation page](https://docs.vllm.ai/en/latest/deployment/integrations/production-stack.html) for more details and examples.
|
|
|
|
--------
|
|
|
|
## Pre-requisite
|
|
|
|
Ensure that you have a running Kubernetes environment with GPU (you can follow [this tutorial](https://github.com/vllm-project/production-stack/blob/main/tutorials/00-install-kubernetes-env.md) to install a Kubernetes environment on a bare-medal GPU machine).
|
|
|
|
## Deployment using native K8s
|
|
|
|
1. Create a PVC, Secret and Deployment for vLLM
|
|
|
|
PVC is used to store the model cache and it is optional, you can use hostPath or other storage options
|
|
|
|
```yaml
|
|
apiVersion: v1
|
|
kind: PersistentVolumeClaim
|
|
metadata:
|
|
name: mistral-7b
|
|
namespace: default
|
|
spec:
|
|
accessModes:
|
|
- ReadWriteOnce
|
|
resources:
|
|
requests:
|
|
storage: 50Gi
|
|
storageClassName: default
|
|
volumeMode: Filesystem
|
|
```
|
|
|
|
Secret is optional and only required for accessing gated models, you can skip this step if you are not using gated models
|
|
|
|
```yaml
|
|
apiVersion: v1
|
|
kind: Secret
|
|
metadata:
|
|
name: hf-token-secret
|
|
namespace: default
|
|
type: Opaque
|
|
stringData:
|
|
token: "REPLACE_WITH_TOKEN"
|
|
```
|
|
|
|
Next to create the deployment file for vLLM to run the model server. The following example deploys the `Mistral-7B-Instruct-v0.3` model.
|
|
|
|
Here are two examples for using NVIDIA GPU and AMD GPU.
|
|
|
|
NVIDIA GPU:
|
|
|
|
```yaml
|
|
apiVersion: apps/v1
|
|
kind: Deployment
|
|
metadata:
|
|
name: mistral-7b
|
|
namespace: default
|
|
labels:
|
|
app: mistral-7b
|
|
spec:
|
|
replicas: 1
|
|
selector:
|
|
matchLabels:
|
|
app: mistral-7b
|
|
template:
|
|
metadata:
|
|
labels:
|
|
app: mistral-7b
|
|
spec:
|
|
volumes:
|
|
- name: cache-volume
|
|
persistentVolumeClaim:
|
|
claimName: mistral-7b
|
|
# vLLM needs to access the host's shared memory for tensor parallel inference.
|
|
- name: shm
|
|
emptyDir:
|
|
medium: Memory
|
|
sizeLimit: "2Gi"
|
|
containers:
|
|
- name: mistral-7b
|
|
image: vllm/vllm-openai:latest
|
|
command: ["/bin/sh", "-c"]
|
|
args: [
|
|
"vllm serve mistralai/Mistral-7B-Instruct-v0.3 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
|
|
]
|
|
env:
|
|
- name: HUGGING_FACE_HUB_TOKEN
|
|
valueFrom:
|
|
secretKeyRef:
|
|
name: hf-token-secret
|
|
key: token
|
|
ports:
|
|
- containerPort: 8000
|
|
resources:
|
|
limits:
|
|
cpu: "10"
|
|
memory: 20G
|
|
nvidia.com/gpu: "1"
|
|
requests:
|
|
cpu: "2"
|
|
memory: 6G
|
|
nvidia.com/gpu: "1"
|
|
volumeMounts:
|
|
- mountPath: /root/.cache/huggingface
|
|
name: cache-volume
|
|
- name: shm
|
|
mountPath: /dev/shm
|
|
livenessProbe:
|
|
httpGet:
|
|
path: /health
|
|
port: 8000
|
|
initialDelaySeconds: 60
|
|
periodSeconds: 10
|
|
readinessProbe:
|
|
httpGet:
|
|
path: /health
|
|
port: 8000
|
|
initialDelaySeconds: 60
|
|
periodSeconds: 5
|
|
```
|
|
|
|
AMD GPU:
|
|
|
|
You can refer to the `deployment.yaml` below if using AMD ROCm GPU like MI300X.
|
|
|
|
```yaml
|
|
apiVersion: apps/v1
|
|
kind: Deployment
|
|
metadata:
|
|
name: mistral-7b
|
|
namespace: default
|
|
labels:
|
|
app: mistral-7b
|
|
spec:
|
|
replicas: 1
|
|
selector:
|
|
matchLabels:
|
|
app: mistral-7b
|
|
template:
|
|
metadata:
|
|
labels:
|
|
app: mistral-7b
|
|
spec:
|
|
volumes:
|
|
# PVC
|
|
- name: cache-volume
|
|
persistentVolumeClaim:
|
|
claimName: mistral-7b
|
|
# vLLM needs to access the host's shared memory for tensor parallel inference.
|
|
- name: shm
|
|
emptyDir:
|
|
medium: Memory
|
|
sizeLimit: "8Gi"
|
|
hostNetwork: true
|
|
hostIPC: true
|
|
containers:
|
|
- name: mistral-7b
|
|
image: rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
|
|
securityContext:
|
|
seccompProfile:
|
|
type: Unconfined
|
|
runAsGroup: 44
|
|
capabilities:
|
|
add:
|
|
- SYS_PTRACE
|
|
command: ["/bin/sh", "-c"]
|
|
args: [
|
|
"vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
|
|
]
|
|
env:
|
|
- name: HUGGING_FACE_HUB_TOKEN
|
|
valueFrom:
|
|
secretKeyRef:
|
|
name: hf-token-secret
|
|
key: token
|
|
ports:
|
|
- containerPort: 8000
|
|
resources:
|
|
limits:
|
|
cpu: "10"
|
|
memory: 20G
|
|
amd.com/gpu: "1"
|
|
requests:
|
|
cpu: "6"
|
|
memory: 6G
|
|
amd.com/gpu: "1"
|
|
volumeMounts:
|
|
- name: cache-volume
|
|
mountPath: /root/.cache/huggingface
|
|
- name: shm
|
|
mountPath: /dev/shm
|
|
```
|
|
|
|
You can get the full example with steps and sample yaml files from <https://github.com/ROCm/k8s-device-plugin/tree/master/example/vllm-serve>.
|
|
|
|
2. Create a Kubernetes Service for vLLM
|
|
|
|
Next, create a Kubernetes Service file to expose the `mistral-7b` deployment:
|
|
|
|
```yaml
|
|
apiVersion: v1
|
|
kind: Service
|
|
metadata:
|
|
name: mistral-7b
|
|
namespace: default
|
|
spec:
|
|
ports:
|
|
- name: http-mistral-7b
|
|
port: 80
|
|
protocol: TCP
|
|
targetPort: 8000
|
|
# The label selector should match the deployment labels & it is useful for prefix caching feature
|
|
selector:
|
|
app: mistral-7b
|
|
sessionAffinity: None
|
|
type: ClusterIP
|
|
```
|
|
|
|
3. Deploy and Test
|
|
|
|
Apply the deployment and service configurations using `kubectl apply -f <filename>`:
|
|
|
|
```console
|
|
kubectl apply -f deployment.yaml
|
|
kubectl apply -f service.yaml
|
|
```
|
|
|
|
To test the deployment, run the following `curl` command:
|
|
|
|
```console
|
|
curl http://mistral-7b.default.svc.cluster.local/v1/completions \
|
|
-H "Content-Type: application/json" \
|
|
-d '{
|
|
"model": "mistralai/Mistral-7B-Instruct-v0.3",
|
|
"prompt": "San Francisco is a",
|
|
"max_tokens": 7,
|
|
"temperature": 0
|
|
}'
|
|
```
|
|
|
|
If the service is correctly deployed, you should receive a response from the vLLM model.
|
|
|
|
## Conclusion
|
|
|
|
Deploying vLLM with Kubernetes allows for efficient scaling and management of ML models leveraging GPU resources. By following the steps outlined above, you should be able to set up and test a vLLM deployment within your Kubernetes cluster. If you encounter any issues or have suggestions, please feel free to contribute to the documentation.
|