vllm/tests/entrypoints/openai/test_chat.py
Matthias Matt cefb9e5a28
[Frontend] Implement Tool Calling with tool_choice='required' (#13483)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
Signed-off-by: Matt, Matthias <matthias.matt@tuwien.ac.at>
Co-authored-by: Liangfu Chen <liangfc@amazon.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2025-04-02 07:45:45 -07:00

1189 lines
39 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# imports for guided decoding tests
import json
import re
from typing import Optional
import jsonschema
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import requests
import torch
from openai import BadRequestError, OpenAI
from ...utils import RemoteOpenAIServer
from .test_completion import zephyr_lora_added_tokens_files # noqa: F401
from .test_completion import zephyr_lora_files # noqa: F401
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
GUIDED_DECODING_BACKENDS = ["outlines", "lm-format-enforcer", "xgrammar"]
@pytest.fixture(scope="module")
def monkeypatch_module():
from _pytest.monkeypatch import MonkeyPatch
mpatch = MonkeyPatch()
yield mpatch
mpatch.undo()
@pytest.fixture(scope="module", params=[False, True])
def server(
request,
monkeypatch_module,
zephyr_lora_files, #noqa: F811
zephyr_lora_added_tokens_files): # noqa: F811
use_v1 = request.param
monkeypatch_module.setenv('VLLM_USE_V1', '1' if use_v1 else '0')
args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--enforce-eager",
# lora config below
"--enable-lora",
"--lora-modules",
f"zephyr-lora={zephyr_lora_files}",
f"zephyr-lora2={zephyr_lora_added_tokens_files}",
"--max-lora-rank",
"64",
"--max-cpu-loras",
"2",
"--max-num-seqs",
"128",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.fixture
def is_v1_server(server):
import os
assert os.environ['VLLM_USE_V1'] in ['0', '1']
return os.environ['VLLM_USE_V1'] == '1'
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize(
# first test base model, then test loras
"model_name",
[MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_no_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=5,
temperature=0.0,
logprobs=False)
choice = chat_completion.choices[0]
assert choice.logprobs is None
@pytest.mark.asyncio
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_zero_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=5,
temperature=0.0,
logprobs=True,
top_logprobs=0)
choice = chat_completion.choices[0]
assert choice.logprobs is not None
assert choice.logprobs.content is not None
assert len(choice.logprobs.content[0].top_logprobs) == 0
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_some_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=5,
temperature=0.0,
logprobs=True,
top_logprobs=5)
choice = chat_completion.choices[0]
assert choice.logprobs is not None
assert choice.logprobs.content is not None
assert len(choice.logprobs.content[0].top_logprobs) == 5
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_too_many_chat_logprobs(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# Default max_logprobs is 20, so this should raise an error
with pytest.raises((openai.BadRequestError, openai.APIError)):
stream = await client.chat.completions.create(model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
top_logprobs=21,
stream=True)
async for chunk in stream:
...
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
top_logprobs=30,
stream=False)
# the server should still work afterwards
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
stream=False)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name, prompt_logprobs",
[(MODEL_NAME, 1), (MODEL_NAME, 0), (MODEL_NAME, -1), (MODEL_NAME, None)],
)
async def test_prompt_logprobs_chat(client: openai.AsyncOpenAI,
model_name: str,
prompt_logprobs: Optional[int]):
params: dict = {
"messages": [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "Who won the world series in 2020?"
}, {
"role":
"assistant",
"content":
"The Los Angeles Dodgers won the World Series in 2020."
}, {
"role": "user",
"content": "Where was it played?"
}],
"model":
model_name
}
if prompt_logprobs is not None:
params["extra_body"] = {"prompt_logprobs": prompt_logprobs}
if prompt_logprobs is not None and prompt_logprobs < 0:
with pytest.raises(BadRequestError):
await client.chat.completions.create(**params)
else:
completion = await client.chat.completions.create(**params)
if prompt_logprobs is not None:
assert completion.prompt_logprobs is not None
assert len(completion.prompt_logprobs) > 0
else:
assert completion.prompt_logprobs is None
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME],
)
async def test_more_than_one_prompt_logprobs_chat(client: openai.AsyncOpenAI,
model_name: str):
params: dict = {
"messages": [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "Who won the world series in 2020?"
}, {
"role":
"assistant",
"content":
"The Los Angeles Dodgers won the World Series in 2020."
}, {
"role": "user",
"content": "Where was it played?"
}],
"model":
model_name,
"extra_body": {
"prompt_logprobs": 1
}
}
completion_1 = await client.chat.completions.create(**params)
params["extra_body"] = {"prompt_logprobs": 2}
completion_2 = await client.chat.completions.create(**params)
assert len(completion_1.prompt_logprobs[3]) == 1
assert len(completion_2.prompt_logprobs[3]) == 2
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_single_chat_session(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
top_logprobs=5)
assert chat_completion.id is not None
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=37, total_tokens=47)
message = choice.message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_chat_streaming(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
)
chunks: list[str] = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == stop_reason
assert delta.content
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
["HuggingFaceH4/zephyr-7b-beta", "zephyr-lora"],
)
async def test_chat_completion_stream_options(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "What is the capital of France?"
}]
# Test stream=True, stream_options={"include_usage": False}
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
stream_options={"include_usage": False})
async for chunk in stream:
assert chunk.usage is None
# Test stream=True, stream_options={"include_usage": True,
# "continuous_usage_stats": False}}
stream = await client.chat.completions.create(model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
stream_options={
"include_usage":
True,
"continuous_usage_stats":
False
})
async for chunk in stream:
if chunk.choices[0].finish_reason is None:
assert chunk.usage is None
else:
assert chunk.usage is None
final_chunk = await stream.__anext__()
assert final_chunk.usage is not None
assert final_chunk.usage.prompt_tokens > 0
assert final_chunk.usage.completion_tokens > 0
assert final_chunk.usage.total_tokens == (
final_chunk.usage.prompt_tokens +
final_chunk.usage.completion_tokens)
assert final_chunk.choices == []
# Test stream=False, stream_options={"include_usage": None}
with pytest.raises(BadRequestError):
await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=False,
stream_options={"include_usage": None})
# Test stream=False, stream_options={"include_usage": True}
with pytest.raises(BadRequestError):
await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=False,
stream_options={"include_usage": True})
# Test stream=True, stream_options={"include_usage": True,
# "continuous_usage_stats": True}
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
extra_body=dict(min_tokens=10),
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats": True,
},
)
last_completion_tokens = 0
async for chunk in stream:
assert chunk.usage.prompt_tokens >= 0
assert last_completion_tokens == 0 or \
chunk.usage.completion_tokens > last_completion_tokens or \
(
not chunk.choices and
chunk.usage.completion_tokens == last_completion_tokens
)
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
chunk.usage.completion_tokens)
last_completion_tokens = chunk.usage.completion_tokens
assert last_completion_tokens == 10
# NOTE: Not sure why, but when I place this after `test_guided_regex_chat`
# (i.e. using the same ordering as in the Completions API tests), the test
# will fail on the second `guided_decoding_backend` even when I swap their order
# (ref: https://github.com/vllm-project/vllm/pull/5526#issuecomment-2173772256)
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_guided_choice_chat(client: openai.AsyncOpenAI,
is_v1_server: bool,
guided_decoding_backend: str,
sample_guided_choice):
if is_v1_server and guided_decoding_backend != 'xgrammar':
pytest.skip("Only xgrammar backend is supported with V1")
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
"The best language for type-safe systems programming is "
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=10,
temperature=0.7,
extra_body=dict(guided_choice=sample_guided_choice,
guided_decoding_backend=guided_decoding_backend))
choice1 = chat_completion.choices[0].message.content
assert choice1 in sample_guided_choice
messages.append({"role": "assistant", "content": choice1})
messages.append({
"role": "user",
"content": "I disagree, pick another one"
})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=10,
temperature=0.7,
extra_body=dict(guided_choice=sample_guided_choice,
guided_decoding_backend=guided_decoding_backend))
choice2 = chat_completion.choices[0].message.content
assert choice2 in sample_guided_choice
assert choice1 != choice2
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_guided_json_chat(client: openai.AsyncOpenAI, is_v1_server: bool,
guided_decoding_backend: str,
sample_json_schema):
if is_v1_server:
pytest.skip("sample_json_schema has features unsupported in V1")
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example JSON for an employee profile that "
f"fits this schema: {sample_json_schema}"
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
extra_body=dict(guided_json=sample_json_schema,
guided_decoding_backend=guided_decoding_backend))
message = chat_completion.choices[0].message
assert message.content is not None
json1 = json.loads(message.content)
jsonschema.validate(instance=json1, schema=sample_json_schema)
messages.append({"role": "assistant", "content": message.content})
messages.append({
"role":
"user",
"content":
"Give me another one with a different name and age"
})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
extra_body=dict(guided_json=sample_json_schema,
guided_decoding_backend=guided_decoding_backend))
message = chat_completion.choices[0].message
assert message.content is not None
json2 = json.loads(message.content)
jsonschema.validate(instance=json2, schema=sample_json_schema)
assert json1["name"] != json2["name"]
assert json1["age"] != json2["age"]
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_guided_regex_chat(client: openai.AsyncOpenAI,
is_v1_server: bool,
guided_decoding_backend: str, sample_regex):
if is_v1_server and guided_decoding_backend != 'xgrammar':
pytest.skip("Only xgrammar backend is supported with V1")
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example IP address with this regex: {sample_regex}"
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=20,
extra_body=dict(guided_regex=sample_regex,
guided_decoding_backend=guided_decoding_backend))
ip1 = chat_completion.choices[0].message.content
assert ip1 is not None
assert re.fullmatch(sample_regex, ip1) is not None
messages.append({"role": "assistant", "content": ip1})
messages.append({"role": "user", "content": "Give me a different one"})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=20,
extra_body=dict(guided_regex=sample_regex,
guided_decoding_backend=guided_decoding_backend))
ip2 = chat_completion.choices[0].message.content
assert ip2 is not None
assert re.fullmatch(sample_regex, ip2) is not None
assert ip1 != ip2
@pytest.mark.asyncio
async def test_guided_decoding_type_error(client: openai.AsyncOpenAI):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
"The best language for type-safe systems programming is "
}]
with pytest.raises(openai.BadRequestError):
_ = await client.chat.completions.create(model=MODEL_NAME,
messages=messages,
extra_body=dict(guided_regex={
1: "Python",
2: "C++"
}))
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_guided_choice_chat_logprobs(client: openai.AsyncOpenAI,
is_v1_server: bool,
guided_decoding_backend: str,
sample_guided_choice):
if is_v1_server and guided_decoding_backend != 'xgrammar':
pytest.skip("Only xgrammar backend is supported with V1")
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
"The best language for type-safe systems programming is "
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=10,
logprobs=True,
top_logprobs=5,
extra_body=dict(guided_choice=sample_guided_choice,
guided_decoding_backend=guided_decoding_backend))
assert chat_completion.choices[0].logprobs is not None
assert chat_completion.choices[0].logprobs.content is not None
top_logprobs = chat_completion.choices[0].logprobs.content[0].top_logprobs
# -9999.0 is the minimum logprob returned by OpenAI
for item in top_logprobs:
assert item.logprob >= -9999.0, f"Failed (top_logprobs={top_logprobs})"
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
async def test_named_tool_use(client: openai.AsyncOpenAI, is_v1_server: bool,
guided_decoding_backend: str,
sample_json_schema):
if is_v1_server:
pytest.skip("sample_json_schema has features unsupported on V1")
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example JSON for an employee profile that "
f"fits this schema: {sample_json_schema}"
}]
# non-streaming
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}],
tool_choice={
"type": "function",
"function": {
"name": "dummy_function_name"
}
},
extra_body=dict(guided_decoding_backend=guided_decoding_backend))
message = chat_completion.choices[0].message
assert len(message.content) == 0
json_string = message.tool_calls[0].function.arguments
json1 = json.loads(json_string)
jsonschema.validate(instance=json1, schema=sample_json_schema)
messages.append({"role": "assistant", "content": json_string})
messages.append({
"role":
"user",
"content":
"Give me another one with a different name and age"
})
# streaming
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}],
tool_choice={
"type": "function",
"function": {
"name": "dummy_function_name"
}
},
extra_body=dict(guided_decoding_backend=guided_decoding_backend),
stream=True)
output = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
assert delta.content is None or len(delta.content) == 0
if delta.tool_calls:
output.append(delta.tool_calls[0].function.arguments)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
json2 = json.loads("".join(output))
jsonschema.validate(instance=json2, schema=sample_json_schema)
assert json1["name"] != json2["name"]
assert json1["age"] != json2["age"]
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_required_tool_use(client: openai.AsyncOpenAI,
is_v1_server: bool, model_name: str):
if is_v1_server:
pytest.skip(
"tool_choice='required' requires features unsupported on V1")
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description":
"The city to find the weather for, e.g. 'Vienna'",
"default": "Vienna",
},
"country": {
"type":
"string",
"description":
"The country that the city is in, e.g. 'Austria'",
},
"unit": {
"type": "string",
"description":
"The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["country", "unit"],
},
},
},
{
"type": "function",
"function": {
"name": "get_forecast",
"description": "Get the weather forecast for a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description":
"The city to get the forecast for, e.g. 'Vienna'",
"default": "Vienna",
},
"country": {
"type":
"string",
"description":
"The country that the city is in, e.g. 'Austria'",
},
"days": {
"type":
"integer",
"description":
"Number of days to get the forecast for (1-7)",
},
"unit": {
"type": "string",
"description":
"The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["country", "days", "unit"],
},
},
},
]
messages = [
{
"role": "user",
"content": "Hi! How are you doing today?"
},
{
"role": "assistant",
"content": "I'm doing well! How can I help you?"
},
{
"role":
"user",
"content":
"Can you tell me what the current weather is in Berlin and the "\
"forecast for the next 5 days, in fahrenheit?",
},
]
# Non-streaming test
chat_completion = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice="required",
extra_body=dict(guided_decoding_backend="outlines"),
)
assert chat_completion.choices[0].message.tool_calls is not None
assert len(chat_completion.choices[0].message.tool_calls) > 0
# Streaming test
stream = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice="required",
extra_body=dict(guided_decoding_backend="outlines"),
stream=True,
)
output = []
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.tool_calls:
output.extend(chunk.choices[0].delta.tool_calls)
assert len(output) > 0
@pytest.mark.asyncio
async def test_inconsistent_tool_choice_and_tools(client: openai.AsyncOpenAI,
is_v1_server: bool,
sample_json_schema):
if is_v1_server:
pytest.skip("sample_json_schema has features unsupported on V1")
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example JSON for an employee profile that "
f"fits this schema: {sample_json_schema}"
}]
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
tool_choice={
"type": "function",
"function": {
"name":
"dummy_function_name"
}
})
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}],
tool_choice={
"type": "function",
"function": {
"name": "nondefined_function_name"
}
})
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}],
tool_choice={})
@pytest.mark.asyncio
async def test_response_format_json_object(client: openai.AsyncOpenAI):
for _ in range(2):
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role":
"user",
"content": ('what is 1+1? please respond with a JSON object, '
'the format is {"result": 2}')
}],
response_format={"type": "json_object"})
content = resp.choices[0].message.content
assert content is not None
loaded = json.loads(content)
assert loaded == {"result": 2}, loaded
@pytest.mark.asyncio
async def test_response_format_json_schema(client: openai.AsyncOpenAI):
prompt = 'what is 1+1? The format is "result": 2'
# Check that this prompt cannot lead to a valid JSON without json_schema
for _ in range(2):
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "user",
"content": prompt
}],
)
content = resp.choices[0].message.content
assert content is not None
with pytest.raises((json.JSONDecodeError, AssertionError)):
loaded = json.loads(content)
assert loaded == {"result": 2}, loaded
for _ in range(2):
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "user",
"content": prompt
}],
response_format={
"type": "json_schema",
"json_schema": {
"name": "foo_test",
"schema": {
"type": "object",
"properties": {
"result": {
"type": "integer"
},
},
},
}
})
content = resp.choices[0].message.content
assert content is not None
loaded = json.loads(content)
assert loaded == {"result": 2}, loaded
@pytest.mark.asyncio
async def test_extra_fields_allowed(client: openai.AsyncOpenAI):
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "user",
"content": "what is 1+1?",
"extra_field": "0",
}], # type: ignore
temperature=0,
seed=0)
content = resp.choices[0].message.content
assert content is not None
@pytest.mark.asyncio
async def test_complex_message_content(client: openai.AsyncOpenAI):
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role":
"user",
"content": [{
"type":
"text",
"text":
"what is 1+1? please provide the result without any other text."
}]
}],
temperature=0,
seed=0)
content = resp.choices[0].message.content
assert content == "2"
@pytest.mark.asyncio
async def test_custom_role(client: openai.AsyncOpenAI):
# Not sure how the model handles custom roles so we just check that
# both string and complex message content are handled in the same way
resp1 = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "my-custom-role",
"content": "what is 1+1?",
}], # type: ignore
temperature=0,
seed=0)
resp2 = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "my-custom-role",
"content": [{
"type": "text",
"text": "what is 1+1?"
}]
}], # type: ignore
temperature=0,
seed=0)
content1 = resp1.choices[0].message.content
content2 = resp2.choices[0].message.content
assert content1 == content2
@pytest.mark.asyncio
async def test_long_seed(client: openai.AsyncOpenAI):
for seed in [
torch.iinfo(torch.long).min - 1,
torch.iinfo(torch.long).max + 1
]:
with pytest.raises(BadRequestError) as exc_info:
await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "system",
"content": "You are a helpful assistant.",
}],
temperature=0,
seed=seed)
assert ("greater_than_equal" in exc_info.value.message
or "less_than_equal" in exc_info.value.message)
@pytest.mark.asyncio
async def test_http_chat_no_model_name_with_curl(server: RemoteOpenAIServer):
url = f"http://localhost:{server.port}/v1/chat/completions"
headers = {
"Content-Type": "application/json",
}
data = {
# model_name is avoided here.
"messages": [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "what is 1+1?"
}],
"max_tokens":
5
}
response = requests.post(url, headers=headers, json=data)
response_data = response.json()
print(response_data)
assert response_data.get("model") == MODEL_NAME
choice = response_data.get("choices")[0]
message = choice.get("message")
assert message is not None
content = message.get("content")
assert content is not None
assert len(content) > 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME, ""])
async def test_http_chat_no_model_name_with_openai(server: RemoteOpenAIServer,
model_name: str):
openai_api_key = "EMPTY"
openai_api_base = f"http://localhost:{server.port}/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
messages = [
{
"role": "user",
"content": "Hello, vLLM!"
},
]
response = client.chat.completions.create(
model="", # empty string
messages=messages,
)
assert response.model == MODEL_NAME