vllm/vllm/entrypoints/openai/serving_chat.py
Jason (Siyu) Zhu cec8c7d7f8
Refactor error handling for multiple exceptions in preprocessing (#15650)
Signed-off-by: JasonZhu1313 <jasonchu13@outlook.com>
2025-03-28 03:27:20 +00:00

1057 lines
49 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import asyncio
import json
import time
from collections.abc import AsyncGenerator, AsyncIterator
from collections.abc import Sequence as GenericSequence
from typing import Callable, Final, Optional, Union
import jinja2
from fastapi import Request
from vllm.config import ModelConfig
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.chat_utils import (ChatTemplateContentFormatOption,
ConversationMessage)
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.protocol import (
ChatCompletionLogProb, ChatCompletionLogProbs,
ChatCompletionLogProbsContent, ChatCompletionNamedToolChoiceParam,
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaFunctionCall, DeltaMessage,
DeltaToolCall, ErrorResponse, FunctionCall, PromptTokenUsageInfo,
RequestResponseMetadata, ToolCall, UsageInfo)
from vllm.entrypoints.openai.reasoning_parsers import (ReasoningParser,
ReasoningParserManager)
from vllm.entrypoints.openai.serving_engine import (OpenAIServing,
clamp_prompt_logprobs)
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
from vllm.entrypoints.openai.tool_parsers import ToolParser, ToolParserManager
from vllm.entrypoints.openai.tool_parsers.mistral_tool_parser import (
MistralToolCall)
from vllm.logger import init_logger
from vllm.outputs import CompletionOutput, RequestOutput
from vllm.sampling_params import BeamSearchParams, SamplingParams
from vllm.sequence import Logprob
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer
from vllm.transformers_utils.tokenizers import (maybe_serialize_tool_calls,
truncate_tool_call_ids)
logger = init_logger(__name__)
class OpenAIServingChat(OpenAIServing):
def __init__(
self,
engine_client: EngineClient,
model_config: ModelConfig,
models: OpenAIServingModels,
response_role: str,
*,
request_logger: Optional[RequestLogger],
chat_template: Optional[str],
chat_template_content_format: ChatTemplateContentFormatOption,
return_tokens_as_token_ids: bool = False,
enable_reasoning: bool = False,
reasoning_parser: Optional[str] = None,
enable_auto_tools: bool = False,
tool_parser: Optional[str] = None,
enable_prompt_tokens_details: bool = False,
) -> None:
super().__init__(engine_client=engine_client,
model_config=model_config,
models=models,
request_logger=request_logger,
return_tokens_as_token_ids=return_tokens_as_token_ids)
self.response_role = response_role
self.chat_template = chat_template
self.chat_template_content_format: Final = chat_template_content_format
# set up tool use
self.enable_auto_tools: bool = enable_auto_tools
if self.enable_auto_tools:
logger.info(
"\"auto\" tool choice has been enabled please note that while"
" the parallel_tool_calls client option is preset for "
"compatibility reasons, it will be ignored.")
self.enable_reasoning: bool = enable_reasoning
self.reasoning_parser: Optional[Callable[[AnyTokenizer],
ReasoningParser]] = None
if self.enable_reasoning:
try:
self.reasoning_parser = (
ReasoningParserManager.get_reasoning_parser(
reasoning_parser))
except Exception as e:
raise TypeError("Error: --enable-reasoning requires "
f"reasoning_parser:'{reasoning_parser}' "
"which has not been registered") from e
self.tool_parser: Optional[Callable[[AnyTokenizer], ToolParser]] = None
if self.enable_auto_tools:
try:
if (tool_parser == "pythonic" and
model_config.model.startswith("meta-llama/Llama-3.2")):
logger.warning(
"Llama3.2 models may struggle to emit valid pythonic"
" tool calls")
self.tool_parser = ToolParserManager.get_tool_parser(
tool_parser)
except Exception as e:
raise TypeError("Error: --enable-auto-tool-choice requires "
f"tool_parser:'{tool_parser}' which has not "
"been registered") from e
self.enable_prompt_tokens_details = enable_prompt_tokens_details
self.default_sampling_params = (
self.model_config.get_diff_sampling_param())
if self.default_sampling_params:
source = self.model_config.generation_config
source = "model" if source == "auto" else source
logger.info("Using default chat sampling params from %s: %s",
source, self.default_sampling_params)
async def create_chat_completion(
self,
request: ChatCompletionRequest,
raw_request: Optional[Request] = None,
) -> Union[AsyncGenerator[str, None], ChatCompletionResponse,
ErrorResponse]:
"""
Chat Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI
Chat Completion API.
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
logger.error("Error with model %s", error_check_ret)
return error_check_ret
# If the engine is dead, raise the engine's DEAD_ERROR.
# This is required for the streaming case, where we return a
# success status before we actually start generating text :).
if self.engine_client.errored:
raise self.engine_client.dead_error
try:
(
lora_request,
prompt_adapter_request,
) = self._maybe_get_adapters(request)
model_name = self._get_model_name(request.model, lora_request)
tokenizer = await self.engine_client.get_tokenizer(lora_request)
tool_parser = self.tool_parser
# validation for OpenAI tools
# tool_choice = "required" is not supported
if request.tool_choice == "required":
return self.create_error_response(
"tool_choice = \"required\" is not supported!")
if isinstance(tokenizer, MistralTokenizer):
# because of issues with pydantic we need to potentially
# re-serialize the tool_calls field of the request
# for more info: see comment in `maybe_serialize_tool_calls`
maybe_serialize_tool_calls(request)
truncate_tool_call_ids(request)
if (request.tool_choice == "auto" and
not (self.enable_auto_tools and tool_parser is not None)
and not isinstance(tokenizer, MistralTokenizer)):
# for hf tokenizers, "auto" tools requires
# --enable-auto-tool-choice and --tool-call-parser
return self.create_error_response(
"\"auto\" tool choice requires "
"--enable-auto-tool-choice and --tool-call-parser to be set"
)
tool_dicts = None if request.tools is None else [
tool.model_dump() for tool in request.tools
]
(
conversation,
request_prompts,
engine_prompts,
) = await self._preprocess_chat(
request,
tokenizer,
request.messages,
chat_template=request.chat_template or self.chat_template,
chat_template_content_format=self.chat_template_content_format,
add_generation_prompt=request.add_generation_prompt,
continue_final_message=request.continue_final_message,
tool_dicts=tool_dicts,
documents=request.documents,
chat_template_kwargs=request.chat_template_kwargs,
tool_parser=tool_parser,
truncate_prompt_tokens=request.truncate_prompt_tokens,
add_special_tokens=request.add_special_tokens,
)
except (ValueError, TypeError, RuntimeError,
jinja2.TemplateError) as e:
logger.exception("Error in preprocessing prompt inputs")
return self.create_error_response(str(e))
request_id = "chatcmpl-" \
f"{self._base_request_id(raw_request, request.request_id)}"
request_metadata = RequestResponseMetadata(request_id=request_id)
if raw_request:
raw_request.state.request_metadata = request_metadata
# Schedule the request and get the result generator.
generators: list[AsyncGenerator[RequestOutput, None]] = []
try:
for i, engine_prompt in enumerate(engine_prompts):
sampling_params: Union[SamplingParams, BeamSearchParams]
default_max_tokens = self.max_model_len - len(
engine_prompt["prompt_token_ids"])
if request.use_beam_search:
sampling_params = request.to_beam_search_params(
default_max_tokens, self.default_sampling_params)
else:
sampling_params = request.to_sampling_params(
default_max_tokens,
self.model_config.logits_processor_pattern,
self.default_sampling_params)
self._log_inputs(request_id,
request_prompts[i],
params=sampling_params,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request)
trace_headers = (None if raw_request is None else await
self._get_trace_headers(raw_request.headers))
if isinstance(sampling_params, BeamSearchParams):
generator = self.engine_client.beam_search(
prompt=engine_prompt,
request_id=request_id,
params=sampling_params,
)
else:
generator = self.engine_client.generate(
engine_prompt,
sampling_params,
request_id,
lora_request=lora_request,
trace_headers=trace_headers,
prompt_adapter_request=prompt_adapter_request,
priority=request.priority,
)
generators.append(generator)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
assert len(generators) == 1
result_generator, = generators
# Streaming response
if request.stream:
return self.chat_completion_stream_generator(
request, result_generator, request_id, model_name,
conversation, tokenizer, request_metadata)
try:
return await self.chat_completion_full_generator(
request, result_generator, request_id, model_name,
conversation, tokenizer, request_metadata)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
if request.add_generation_prompt:
return self.response_role
return request.messages[-1]["role"]
async def chat_completion_stream_generator(
self,
request: ChatCompletionRequest,
result_generator: AsyncIterator[RequestOutput],
request_id: str,
model_name: str,
conversation: list[ConversationMessage],
tokenizer: AnyTokenizer,
request_metadata: RequestResponseMetadata,
) -> AsyncGenerator[str, None]:
created_time = int(time.time())
chunk_object_type: Final = "chat.completion.chunk"
first_iteration = True
# Send response for each token for each request.n (index)
num_choices = 1 if request.n is None else request.n
previous_num_tokens = [0] * num_choices
finish_reason_sent = [False] * num_choices
num_prompt_tokens = 0
num_cached_tokens = None
if isinstance(request.tool_choice, ChatCompletionNamedToolChoiceParam):
tool_choice_function_name = request.tool_choice.function.name
else:
tool_choice_function_name = None
# Determine whether tools are in use with "auto" tool choice
tool_choice_auto = (
not tool_choice_function_name
and self._should_stream_with_auto_tool_parsing(request))
should_stream_with_reasoning_parsing = (
self._should_stream_with_reasoning_parsing(request))
all_previous_token_ids: Optional[list[list[int]]]
# Only one of these will be used, thus previous_texts and
# all_previous_token_ids will not be used twice in the same iteration.
if tool_choice_auto or should_stream_with_reasoning_parsing:
# These are only required in "auto" tool choice case
previous_texts = [""] * num_choices
all_previous_token_ids = [[]] * num_choices
# For reasoning parser and tool call all enabled
added_content_delta_arr = [False] * num_choices
reasoning_end_arr = [False] * num_choices
else:
previous_texts, all_previous_token_ids = None, None
try:
# There is no need to check if the reasoning_parser is None
# because the should_stream_with_reasoning_parsing check
# already ensures that the reasoning_parser is not None.
# but the pre-commit hook requires it.
if should_stream_with_reasoning_parsing and \
self.reasoning_parser is not None:
reasoning_parser = self.reasoning_parser(tokenizer)
except RuntimeError as e:
logger.exception("Error in reasoning parser creation.")
data = self.create_streaming_error_response(str(e))
yield f"data: {data}\n\n"
yield "data: [DONE]\n\n"
return
# Prepare the tool parser if it's needed
try:
if tool_choice_auto and self.tool_parser:
tool_parsers: list[Optional[ToolParser]] = [
self.tool_parser(tokenizer)
] * num_choices
else:
tool_parsers = [None] * num_choices
except Exception as e:
logger.exception("Error in tool parser creation.")
data = self.create_streaming_error_response(str(e))
yield f"data: {data}\n\n"
yield "data: [DONE]\n\n"
return
stream_options = request.stream_options
if stream_options:
include_usage = stream_options.include_usage
include_continuous_usage = include_usage and \
stream_options.continuous_usage_stats
else:
include_usage, include_continuous_usage = False, False
try:
async for res in result_generator:
if res.prompt_token_ids is not None:
num_prompt_tokens = len(res.prompt_token_ids)
if res.encoder_prompt_token_ids is not None:
num_prompt_tokens += len(res.encoder_prompt_token_ids)
# We need to do it here, because if there are exceptions in
# the result_generator, it needs to be sent as the FIRST
# response (by the try...catch).
if first_iteration:
num_cached_tokens = res.num_cached_tokens
# Send first response for each request.n (index) with
# the role
role = self.get_chat_request_role(request)
# NOTE num_choices defaults to 1 so this usually executes
# once per request
for i in range(num_choices):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(
role=role,
content="",
),
logprobs=None,
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
# if continuous usage stats are requested, add it
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
# Send response to echo the input portion of the
# last message
if request.echo:
last_msg_content: Union[str, list[dict[str, str]]] = ""
if conversation and "content" in conversation[
-1] and conversation[-1].get("role") == role:
last_msg_content = conversation[-1]["content"] or ""
if last_msg_content:
for i in range(num_choices):
choice_data = (
ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(
content=last_msg_content),
logprobs=None,
finish_reason=None))
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens)
data = chunk.model_dump_json(
exclude_unset=True)
yield f"data: {data}\n\n"
first_iteration = False
for output in res.outputs:
i = output.index
tool_parser = tool_parsers[i]
if finish_reason_sent[i]:
continue
if request.logprobs and request.top_logprobs is not None:
assert output.logprobs is not None, (
"Did not output logprobs")
logprobs = self._create_chat_logprobs(
token_ids=output.token_ids,
top_logprobs=output.logprobs,
tokenizer=tokenizer,
num_output_top_logprobs=request.top_logprobs,
return_as_token_id=request.
return_tokens_as_token_ids,
)
else:
logprobs = None
delta_text = output.text
if not delta_text and not output.token_ids and \
not previous_num_tokens[i]:
# Chunked prefill case, don't return empty chunks
continue
delta_message: Optional[DeltaMessage]
# just update previous_texts and previous_token_ids
if tool_choice_auto or should_stream_with_reasoning_parsing:
assert previous_texts is not None
assert all_previous_token_ids is not None
previous_text = previous_texts[i]
previous_token_ids = all_previous_token_ids[i]
current_text = previous_text + delta_text
current_token_ids = previous_token_ids + list(
output.token_ids)
# handle streaming deltas for tools with named tool_choice
if tool_choice_function_name:
if (self.enable_reasoning
and not reasoning_parser.is_reasoning_end(
previous_token_ids)):
assert reasoning_parser is not None
delta_message = (
reasoning_parser.
extract_reasoning_content_streaming(
previous_text,
current_text,
delta_text,
previous_token_ids,
current_token_ids,
output.token_ids,
))
# When encountering think end id in delta_token_ids,
# process the `content`. Only keep 'content',
# remove 'reasoning_content'
if reasoning_parser.is_reasoning_end(
list(output.token_ids)):
if delta_message and delta_message.content:
# This need to be added to next `delta_text`
current_text = delta_message.content
delta_message.content = None
else:
current_text = ""
else:
# Just to add remaining `content`
if self.enable_reasoning:
delta_text = previous_text + delta_text
current_text = ""
delta_message = DeltaMessage(tool_calls=[
DeltaToolCall(function=DeltaFunctionCall(
name=tool_choice_function_name,
arguments=delta_text),
index=i)
])
# handle streaming deltas for tools with "auto" tool choice
# and reasoning parser
elif tool_choice_auto and self.enable_reasoning:
assert tool_parser is not None
assert reasoning_parser is not None
assert added_content_delta_arr is not None
assert reasoning_end_arr is not None
if not reasoning_end_arr[i]:
delta_message = (
reasoning_parser.
extract_reasoning_content_streaming(
previous_text,
current_text,
delta_text,
previous_token_ids,
current_token_ids,
output.token_ids,
))
# When encountering think end id in delta_token_ids,
# set reasoning status to end.
# Remove the text and token ids related
# to 'reasoning_content'.
if reasoning_parser.is_reasoning_end(
list(output.token_ids)):
reasoning_end_arr[i] = True
current_token_ids = \
reasoning_parser.extract_content_ids(
list(output.token_ids))
if delta_message and delta_message.content:
current_text = delta_message.content
delta_message.content = None
else:
current_text = ""
# handle tool calls only after reasoning is done,
else:
delta_token_ids = list(output.token_ids)
# First time to tool call,
# add the remaining text and token ids
# to delta from previous
if not added_content_delta_arr[i]:
added_content_delta_arr[i] = True
previous_text = ""
previous_token_ids = []
delta_text = current_text
delta_token_ids = current_token_ids
delta_message = (
tool_parser.extract_tool_calls_streaming(
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
previous_token_ids=previous_token_ids,
current_token_ids=current_token_ids,
delta_token_ids=delta_token_ids,
request=request))
# when only tool calls
elif tool_choice_auto:
assert tool_parser is not None
delta_message = (
tool_parser.extract_tool_calls_streaming(
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
previous_token_ids=previous_token_ids,
current_token_ids=current_token_ids,
delta_token_ids=output.token_ids,
request=request))
# when only reasoning
elif self.enable_reasoning:
assert reasoning_parser is not None
delta_message = (reasoning_parser.
extract_reasoning_content_streaming(
previous_text,
current_text,
delta_text,
previous_token_ids,
current_token_ids,
output.token_ids,
))
# handle streaming just a content delta
else:
delta_message = DeltaMessage(content=delta_text)
# update the previous values for the next iteration
if tool_choice_auto or should_stream_with_reasoning_parsing:
assert previous_texts is not None
assert all_previous_token_ids is not None
previous_texts[i] = current_text
all_previous_token_ids[i] = current_token_ids
# set the previous values for the next iteration
previous_num_tokens[i] += len(output.token_ids)
# if the message delta is None (e.g. because it was a
# "control token" for tool calls or the parser otherwise
# wasn't ready to send a token, then
# get the next token without streaming a chunk
if delta_message is None:
continue
if output.finish_reason is None:
# Send token-by-token response for each request.n
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=delta_message,
logprobs=logprobs,
finish_reason=None)
# if the model is finished generating
else:
# check to make sure we haven't "forgotten" to stream
# any tokens that were generated but previously
# matched by partial json parsing
# only happens if we are NOT using guided decoding
auto_tools_called = False
if tool_parser:
auto_tools_called = len(
tool_parser.prev_tool_call_arr) > 0
index = len(tool_parser.prev_tool_call_arr
) - 1 if auto_tools_called else 0
else:
index = 0
if self._should_check_for_unstreamed_tool_arg_tokens(
delta_message, output) and tool_parser:
latest_delta_len = 0
if ((isinstance(
delta_message.tool_calls[0].function,
DeltaFunctionCall)) and isinstance(
delta_message.tool_calls[0].function.
arguments, str)):
latest_delta_len = len(
delta_message.tool_calls[0].function.
arguments)
# get the expected call based on partial JSON
# parsing which "autocompletes" the JSON
expected_call = json.dumps(
tool_parser.prev_tool_call_arr[index].get(
"arguments", {}),
ensure_ascii=False)
# get what we've streamed so far for arguments
# for the current tool
actual_call = tool_parser.streamed_args_for_tool[
index]
if (latest_delta_len > 0):
actual_call = actual_call[:-latest_delta_len]
# check to see if there's anything left to stream
remaining_call = expected_call.replace(
actual_call, "", 1)
# set that as a delta message
delta_message = DeltaMessage(tool_calls=[
DeltaToolCall(index=index,
function=DeltaFunctionCall(
arguments=remaining_call).
model_dump(exclude_none=True))
])
# Send the finish response for each request.n only once
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=delta_message,
logprobs=logprobs,
finish_reason=output.finish_reason
if not auto_tools_called else "tool_calls",
stop_reason=output.stop_reason)
finish_reason_sent[i] = True
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
# handle usage stats if requested & if continuous
if include_continuous_usage:
completion_tokens = previous_num_tokens[i]
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=num_prompt_tokens + completion_tokens,
)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
# once the final token is handled, if stream_options.include_usage
# is sent, send the usage
if include_usage:
completion_tokens = sum(previous_num_tokens)
final_usage = UsageInfo(prompt_tokens=num_prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=num_prompt_tokens +
completion_tokens)
if self.enable_prompt_tokens_details and num_cached_tokens:
final_usage.prompt_tokens_details = PromptTokenUsageInfo(
cached_tokens=num_cached_tokens)
final_usage_chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[],
model=model_name,
usage=final_usage)
final_usage_data = (final_usage_chunk.model_dump_json(
exclude_unset=True, exclude_none=True))
yield f"data: {final_usage_data}\n\n"
# report to FastAPI middleware aggregate usage across all choices
num_completion_tokens = sum(previous_num_tokens)
request_metadata.final_usage_info = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_completion_tokens,
total_tokens=num_prompt_tokens + num_completion_tokens)
except Exception as e:
# TODO: Use a vllm-specific Validation Error
logger.exception("Error in chat completion stream generator.")
data = self.create_streaming_error_response(str(e))
yield f"data: {data}\n\n"
# Send the final done message after all response.n are finished
yield "data: [DONE]\n\n"
async def chat_completion_full_generator(
self,
request: ChatCompletionRequest,
result_generator: AsyncIterator[RequestOutput],
request_id: str,
model_name: str,
conversation: list[ConversationMessage],
tokenizer: AnyTokenizer,
request_metadata: RequestResponseMetadata,
) -> Union[ErrorResponse, ChatCompletionResponse]:
created_time = int(time.time())
final_res: Optional[RequestOutput] = None
try:
async for res in result_generator:
final_res = res
except asyncio.CancelledError:
return self.create_error_response("Client disconnected")
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
assert final_res is not None
choices: list[ChatCompletionResponseChoice] = []
role = self.get_chat_request_role(request)
for output in final_res.outputs:
token_ids = output.token_ids
out_logprobs = output.logprobs
if request.logprobs and request.top_logprobs is not None:
assert out_logprobs is not None, "Did not output logprobs"
logprobs = self._create_chat_logprobs(
token_ids=token_ids,
top_logprobs=out_logprobs,
num_output_top_logprobs=request.top_logprobs,
tokenizer=tokenizer,
return_as_token_id=request.return_tokens_as_token_ids,
)
else:
logprobs = None
should_stream_with_reasoning_parsing = (
self._should_stream_with_reasoning_parsing(request))
# In the OpenAI API the finish_reason is "tools_called"
# if the tool choice is auto and the model produced a tool
# call. The same is not true for named function calls
auto_tools_called = False
if should_stream_with_reasoning_parsing and \
self.reasoning_parser is not None:
try:
reasoning_parser = self.reasoning_parser(tokenizer)
except RuntimeError as e:
logger.exception("Error in reasoning parser creation.")
return self.create_error_response(str(e))
# If the reasoning parser is enabled,
# tool calls are extracted exclusively from the content.
reasoning_content, content = (
reasoning_parser.extract_reasoning_content(
output.text, request=request))
else:
reasoning_content = None
content = output.text
# if auto tools are not enabled, and a named tool choice using
# outlines is not being used
if (not self.enable_auto_tools
or not self.tool_parser) and not isinstance(
request.tool_choice,
ChatCompletionNamedToolChoiceParam):
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
# if the request uses tools and specified a tool choice
elif request.tool_choice and type(
request.tool_choice) is ChatCompletionNamedToolChoiceParam:
tool_call_class = MistralToolCall if isinstance(
tokenizer, MistralTokenizer) else ToolCall
message = ChatMessage(
role=role,
reasoning_content=reasoning_content,
content="",
tool_calls=[
tool_call_class(function=FunctionCall(
name=request.tool_choice.function.name,
arguments=content))
])
# if the request doesn't use tool choice
# OR specifies to not use a tool
elif not request.tool_choice or request.tool_choice == "none":
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
# handle when there are tools and tool choice is auto
elif request.tools and (
request.tool_choice == "auto"
or request.tool_choice is None) and self.enable_auto_tools \
and self.tool_parser:
try:
tool_parser = self.tool_parser(tokenizer)
except RuntimeError as e:
logger.exception("Error in tool parser creation.")
return self.create_error_response(str(e))
tool_call_info = tool_parser.extract_tool_calls(
content if content is not None else "", request=request)
# In the OpenAI API the finish_reason is "tools_called"
# if the tool choice is auto and the model produced a tool
# call. The same is not true for named function calls
auto_tools_called = tool_call_info.tools_called
if tool_call_info.tools_called:
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=tool_call_info.content,
tool_calls=tool_call_info.tool_calls)
else:
# FOR NOW make it a chat message; we will have to detect
# the type to make it later.
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
# undetermined case that is still important to handle
else:
logger.error(
"Error in chat_completion_full_generator - cannot determine"
" if tools should be extracted. Returning a standard chat "
"completion.")
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=message,
logprobs=logprobs,
finish_reason="tool_calls" if auto_tools_called else
output.finish_reason if output.finish_reason else "stop",
stop_reason=output.stop_reason)
choices.append(choice_data)
if request.echo:
last_msg_content: Union[str, list[dict[str, str]]] = ""
if conversation and "content" in conversation[-1] and conversation[
-1].get("role") == role:
last_msg_content = conversation[-1]["content"] or ""
if isinstance(last_msg_content, list):
last_msg_content = "\n".join(msg['text']
for msg in last_msg_content)
for choice in choices:
full_message = last_msg_content + (choice.message.content
or "")
choice.message.content = full_message
assert final_res.prompt_token_ids is not None
num_prompt_tokens = len(final_res.prompt_token_ids)
if final_res.encoder_prompt_token_ids is not None:
num_prompt_tokens += len(final_res.encoder_prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens +
num_generated_tokens)
if self.enable_prompt_tokens_details and final_res.num_cached_tokens:
usage.prompt_tokens_details = PromptTokenUsageInfo(
cached_tokens=final_res.num_cached_tokens)
request_metadata.final_usage_info = usage
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
prompt_logprobs=clamp_prompt_logprobs(final_res.prompt_logprobs),
)
return response
def _get_top_logprobs(
self, logprobs: dict[int, Logprob], top_logprobs: Optional[int],
tokenizer: AnyTokenizer,
should_return_as_token_id: bool) -> list[ChatCompletionLogProb]:
return [
ChatCompletionLogProb(token=(token := self._get_decoded_token(
p[1],
p[0],
tokenizer,
return_as_token_id=should_return_as_token_id)),
logprob=max(p[1].logprob, -9999.0),
bytes=list(
token.encode("utf-8", errors="replace")))
for i, p in enumerate(logprobs.items())
if top_logprobs and i < top_logprobs
]
def _create_chat_logprobs(
self,
token_ids: GenericSequence[int],
top_logprobs: GenericSequence[Optional[dict[int, Logprob]]],
tokenizer: AnyTokenizer,
num_output_top_logprobs: Optional[int] = None,
return_as_token_id: Optional[bool] = None,
) -> ChatCompletionLogProbs:
"""Create OpenAI-style logprobs."""
logprobs_content: list[ChatCompletionLogProbsContent] = []
should_return_as_token_id = return_as_token_id if \
return_as_token_id is not None else self.return_tokens_as_token_ids
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is None:
token = tokenizer.decode(token_id)
if should_return_as_token_id:
token = f"token_id:{token_id}"
logprobs_content.append(
ChatCompletionLogProbsContent(
token=token,
bytes=list(token.encode("utf-8", errors="replace")),
))
else:
step_token = step_top_logprobs[token_id]
step_decoded = step_token.decoded_token
logprobs_content.append(
ChatCompletionLogProbsContent(
token=self._get_decoded_token(
step_token,
token_id,
tokenizer,
should_return_as_token_id,
),
logprob=max(step_token.logprob, -9999.0),
bytes=None if step_decoded is None else list(
step_decoded.encode("utf-8", errors="replace")),
top_logprobs=self._get_top_logprobs(
step_top_logprobs, num_output_top_logprobs,
tokenizer, should_return_as_token_id),
))
return ChatCompletionLogProbs(content=logprobs_content)
def _should_stream_with_auto_tool_parsing(self,
request: ChatCompletionRequest):
"""
Utility function to check if streamed tokens should go through the tool
call parser that was configured.
We only want to do this IF user-provided tools are set, a tool parser
is configured, "auto" tool choice is enabled, and the request's tool
choice field indicates that "auto" tool choice should be used.
"""
return (request.tools and self.tool_parser and self.enable_auto_tools
and request.tool_choice in ['auto', None])
def _should_stream_with_reasoning_parsing(self,
request: ChatCompletionRequest):
"""
Utility function to check if streamed tokens should go through the
reasoning parser that was configured.
We only want to do this IF reasoning is enabled and a reasoning
parser is configured.
"""
return self.enable_reasoning and self.reasoning_parser is not None
def _should_check_for_unstreamed_tool_arg_tokens(
self,
delta_message: Optional[DeltaMessage],
output: CompletionOutput,
) -> bool:
"""
Check to see if we should check for unstreamed tool arguments tokens.
This is only applicable when auto tool parsing is enabled, the delta
is a tool call with arguments.
"""
# yapf: disable
return bool(
# if there is a delta message that includes tool calls which
# include a function that has arguments
output.finish_reason is not None
and self.enable_auto_tools and self.tool_parser and delta_message
and delta_message.tool_calls and delta_message.tool_calls[0]
and delta_message.tool_calls[0].function
and delta_message.tool_calls[0].function.arguments is not None
)