360 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_phi.py
# Copyright 2023 The vLLM team.
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# BSD 3-Clause License
#
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Inference-only Phi-1.5 model compatible with HuggingFace weights."""
from typing import Iterable, Optional, Set, Tuple, Union
import torch
from torch import nn
from transformers import PhiConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
class PhiAttention(nn.Module):
def __init__(self,
config: PhiConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
# pylint: disable=C0103
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_size,
self.total_num_heads,
bias=True,
quant_config=quant_config,
)
self.dense = RowParallelLinear(
self.hidden_size,
self.hidden_size,
quant_config=quant_config,
)
scaling = self.head_size**-0.5
rotary_dim = int(config.partial_rotary_factor *
(config.hidden_size // config.num_attention_heads))
assert rotary_dim % 2 == 0
# pylint: disable=C0301
# Refer to:
# https://huggingface.co/microsoft/phi-1_5/blob/d212a789620c380ff32ca1d1ee9943a777360987/modeling_phi.py#L518
rope_theta = getattr(config, "rope_theta", 10000.0)
max_position_embeddings = getattr(config, "max_position_embeddings",
2048)
self.rotary_emb = get_rope(
self.head_size,
rotary_dim=rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
)
self.attn = Attention(self.num_heads,
self.head_size,
scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn")
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.dense(attn_output)
return output
class PhiMLP(nn.Module):
def __init__(self,
config: PhiConfig,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
n_inner = getattr(config, "n_inner", None)
n_inner = n_inner if n_inner is not None else 4 * config.hidden_size
self.fc1 = ColumnParallelLinear(
config.hidden_size,
n_inner,
quant_config=quant_config,
)
self.fc2 = RowParallelLinear(
n_inner,
config.hidden_size,
quant_config=quant_config,
)
self.act = get_act_fn(config.hidden_act)
def forward(self, hidden_states):
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class PhiLayer(nn.Module):
def __init__(self,
config: PhiConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.self_attn = PhiAttention(config,
cache_config,
quant_config,
prefix=f"{prefix}.self_attn")
self.mlp = PhiMLP(config, quant_config)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attn_outputs = self.self_attn(
position_ids=position_ids,
hidden_states=hidden_states,
)
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states
@support_torch_compile
class PhiModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: PhiLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")
self.final_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
for layer in self.layers[self.start_layer:self.end_layer]:
hidden_states = layer(positions, hidden_states)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
class PhiForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
]
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
# lm_head use bias, cannot share word embeddings
assert not config.tie_word_embeddings
self.lora_config = lora_config
self.quant_config = quant_config
self.model = PhiModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=True,
quant_config=quant_config)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata, self.lm_head.bias)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v")
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# pylint: disable=E1136
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params