
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
172 lines
4.9 KiB
Python
172 lines
4.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
This example shows how to use vLLM for running offline inference with
|
|
the correct prompt format on vision language models for multimodal embedding.
|
|
|
|
For most models, the prompt format should follow corresponding examples
|
|
on HuggingFace model repository.
|
|
"""
|
|
from argparse import Namespace
|
|
from typing import Literal, NamedTuple, Optional, TypedDict, Union, get_args
|
|
|
|
from PIL.Image import Image
|
|
|
|
from vllm import LLM
|
|
from vllm.multimodal.utils import fetch_image
|
|
from vllm.utils import FlexibleArgumentParser
|
|
|
|
|
|
class TextQuery(TypedDict):
|
|
modality: Literal["text"]
|
|
text: str
|
|
|
|
|
|
class ImageQuery(TypedDict):
|
|
modality: Literal["image"]
|
|
image: Image
|
|
|
|
|
|
class TextImageQuery(TypedDict):
|
|
modality: Literal["text+image"]
|
|
text: str
|
|
image: Image
|
|
|
|
|
|
QueryModality = Literal["text", "image", "text+image"]
|
|
Query = Union[TextQuery, ImageQuery, TextImageQuery]
|
|
|
|
|
|
class ModelRequestData(NamedTuple):
|
|
llm: LLM
|
|
prompt: str
|
|
image: Optional[Image]
|
|
|
|
|
|
def run_e5_v(query: Query):
|
|
llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n' # noqa: E501
|
|
|
|
if query["modality"] == "text":
|
|
text = query["text"]
|
|
prompt = llama3_template.format(
|
|
f"{text}\nSummary above sentence in one word: ")
|
|
image = None
|
|
elif query["modality"] == "image":
|
|
prompt = llama3_template.format(
|
|
"<image>\nSummary above image in one word: ")
|
|
image = query["image"]
|
|
else:
|
|
modality = query['modality']
|
|
raise ValueError(f"Unsupported query modality: '{modality}'")
|
|
|
|
llm = LLM(
|
|
model="royokong/e5-v",
|
|
task="embed",
|
|
max_model_len=4096,
|
|
)
|
|
|
|
return ModelRequestData(
|
|
llm=llm,
|
|
prompt=prompt,
|
|
image=image,
|
|
)
|
|
|
|
|
|
def run_vlm2vec(query: Query):
|
|
if query["modality"] == "text":
|
|
text = query["text"]
|
|
prompt = f"Find me an everyday image that matches the given caption: {text}" # noqa: E501
|
|
image = None
|
|
elif query["modality"] == "image":
|
|
prompt = "<|image_1|> Find a day-to-day image that looks similar to the provided image." # noqa: E501
|
|
image = query["image"]
|
|
elif query["modality"] == "text+image":
|
|
text = query["text"]
|
|
prompt = f"<|image_1|> Represent the given image with the following question: {text}" # noqa: E501
|
|
image = query["image"]
|
|
else:
|
|
modality = query['modality']
|
|
raise ValueError(f"Unsupported query modality: '{modality}'")
|
|
|
|
llm = LLM(
|
|
model="TIGER-Lab/VLM2Vec-Full",
|
|
task="embed",
|
|
trust_remote_code=True,
|
|
mm_processor_kwargs={"num_crops": 4},
|
|
)
|
|
|
|
return ModelRequestData(
|
|
llm=llm,
|
|
prompt=prompt,
|
|
image=image,
|
|
)
|
|
|
|
|
|
def get_query(modality: QueryModality):
|
|
if modality == "text":
|
|
return TextQuery(modality="text", text="A dog sitting in the grass")
|
|
|
|
if modality == "image":
|
|
return ImageQuery(
|
|
modality="image",
|
|
image=fetch_image(
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/American_Eskimo_Dog.jpg/360px-American_Eskimo_Dog.jpg" # noqa: E501
|
|
),
|
|
)
|
|
|
|
if modality == "text+image":
|
|
return TextImageQuery(
|
|
modality="text+image",
|
|
text="A cat standing in the snow.",
|
|
image=fetch_image(
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Felis_catus-cat_on_snow.jpg/179px-Felis_catus-cat_on_snow.jpg" # noqa: E501
|
|
),
|
|
)
|
|
|
|
msg = f"Modality {modality} is not supported."
|
|
raise ValueError(msg)
|
|
|
|
|
|
def run_encode(model: str, modality: QueryModality):
|
|
query = get_query(modality)
|
|
req_data = model_example_map[model](query)
|
|
|
|
mm_data = {}
|
|
if req_data.image is not None:
|
|
mm_data["image"] = req_data.image
|
|
|
|
outputs = req_data.llm.embed({
|
|
"prompt": req_data.prompt,
|
|
"multi_modal_data": mm_data,
|
|
})
|
|
|
|
for output in outputs:
|
|
print(output.outputs.embedding)
|
|
|
|
|
|
def main(args: Namespace):
|
|
run_encode(args.model_name, args.modality)
|
|
|
|
|
|
model_example_map = {
|
|
"e5_v": run_e5_v,
|
|
"vlm2vec": run_vlm2vec,
|
|
}
|
|
|
|
if __name__ == "__main__":
|
|
parser = FlexibleArgumentParser(
|
|
description='Demo on using vLLM for offline inference with '
|
|
'vision language models for multimodal embedding')
|
|
parser.add_argument('--model-name',
|
|
'-m',
|
|
type=str,
|
|
default="vlm2vec",
|
|
choices=model_example_map.keys(),
|
|
help='The name of the embedding model.')
|
|
parser.add_argument('--modality',
|
|
type=str,
|
|
default="image",
|
|
choices=get_args(QueryModality),
|
|
help='Modality of the input.')
|
|
args = parser.parse_args()
|
|
main(args)
|