vllm/tests/distributed/test_torchrun_example.py
மனோஜ்குமார் பழனிச்சாமி cc10281498
[Misc] Set default value of seed to None (#14274)
Signed-off-by: மனோஜ்குமார் பழனிச்சாமி <smartmanoj42857@gmail.com>
2025-03-07 10:40:01 +00:00

66 lines
2.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# unit test for `examples/offline_inference/torchrun_example.py`
import random
import torch.distributed as dist
from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import get_world_group
# Create prompts
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# set different `gpu_memory_utilization` and `swap_space` for different ranks,
# to test if all ranks agree on the same kv cache configuration.
llm = LLM(model="facebook/opt-125m",
tensor_parallel_size=2,
distributed_executor_backend="external_launcher",
gpu_memory_utilization=random.uniform(0.7, 0.9),
swap_space=random.randint(1, 4),
seed=0)
outputs = llm.generate(prompts, sampling_params)
cpu_group = get_world_group().cpu_group
torch_rank = dist.get_rank(group=cpu_group)
def test_consistent_across_ranks(obj):
if torch_rank == 0:
dist.broadcast_object_list([obj], src=0, group=cpu_group)
else:
container = [None]
dist.broadcast_object_list(container, src=0, group=cpu_group)
assert container[0] == obj
test_consistent_across_ranks(
llm.llm_engine.vllm_config.cache_config.num_cpu_blocks)
test_consistent_across_ranks(
llm.llm_engine.vllm_config.cache_config.num_gpu_blocks)
# make sure we can access the model parameters from the calling process
# of the `LLM` instance.
params = list(llm.llm_engine.model_executor.driver_worker.worker.model_runner.
model.parameters())
test_consistent_across_ranks(len(params))
# all ranks should have the same outputs
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
test_consistent_across_ranks(prompt)
test_consistent_across_ranks(generated_text)
print(f"Rank {torch_rank}, Prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")