Luka Govedič 7937009a7e
[Kernel] Replaced blockReduce[...] functions with cub::BlockReduce (#7233)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-08-21 20:18:00 -04:00

317 lines
11 KiB
Plaintext

#include <ATen/cuda/CUDAContext.h>
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "cuda_compat.h"
#include "dispatch_utils.h"
#ifndef USE_ROCM
#include <cub/util_type.cuh>
#include <cub/cub.cuh>
#else
#include <hipcub/util_type.hpp>
#include <hipcub/hipcub.hpp>
#endif
#ifndef USE_ROCM
using FP8_TYPE = c10::Float8_e4m3fn;
C10_HOST_DEVICE constexpr auto FP8_E4M3_MAX =
std::numeric_limits<FP8_TYPE>::max();
#else
#include "amd/hip_float8.h"
using FP8_TYPE = c10::Float8_e4m3fnuz;
// Using the default max value from pytorch (240.0) will cause accuracy
// issue when running dynamic quantization. Here use 224.0f for rocm.
constexpr auto FP8_E4M3_MAX = 224.0f;
#endif
namespace vllm {
__device__ __forceinline__ float atomicMaxFloat(float* addr, float value) {
float old;
old = (value >= 0)
? __int_as_float(atomicMax((int*)addr, __float_as_int(value)))
: __uint_as_float(
atomicMin((unsigned int*)addr, __float_as_uint(value)));
return old;
}
template <bool is_scale_inverted>
__device__ __forceinline__ FP8_TYPE scaled_fp8_conversion(float const val,
float const scale) {
float x = 0.0f;
if constexpr (is_scale_inverted) {
x = val * scale;
} else {
x = val / scale;
}
float r = fmax(-FP8_E4M3_MAX, fmin(x, FP8_E4M3_MAX));
#ifndef USE_ROCM
return static_cast<c10::Float8_e4m3fn>(r);
#else
// Use hardware cvt instruction for fp8 on rocm
return c10::Float8_e4m3fnuz(hip_fp8(r).data,
c10::Float8_e4m3fnuz::from_bits());
#endif
}
// Compute the absolute maximum m of the input tensor and store
// m / float8_e4m3::max() in *scale. Each thread block performs a
// reduction tree and the memory in scale is atomically updated.
// So to get the right answer, *scale needs to be initialized to
// a value <= 0.0 and we need to wait for all thread blocks to
// finish before consuming *scale.
template <typename scalar_t>
__global__ void segmented_max_reduction(float* __restrict__ scale,
const scalar_t* __restrict__ input,
int64_t num_elems) {
__shared__ float cache[1024];
int64_t i = blockDim.x * blockIdx.x + threadIdx.x;
// First store maximum for all values processes by
// the current thread in cache[threadIdx.x]
scalar_t tmp = 0.0;
while (i < num_elems) {
float x = static_cast<float>(input[i]);
tmp = max(tmp, fabs(x));
i += blockDim.x * gridDim.x;
}
cache[threadIdx.x] = tmp;
__syncthreads();
// Now perform parallel reduction within the thread block
int ib = blockDim.x / 2;
while (ib != 0) {
if (threadIdx.x < ib && cache[threadIdx.x + ib] > cache[threadIdx.x]) {
cache[threadIdx.x] = cache[threadIdx.x + ib];
}
__syncthreads();
ib /= 2;
}
// Finally, since cache[0] contains the maximum for this thread block,
// atomically write the max to the target location
if (threadIdx.x == 0) {
atomicMaxFloat(scale, cache[0] / FP8_E4M3_MAX);
}
}
template <typename scalar_t>
struct __align__(8) vec4_t {
scalar_t x;
scalar_t y;
scalar_t z;
scalar_t w;
};
typedef struct __align__(4) {
FP8_TYPE x;
FP8_TYPE y;
FP8_TYPE z;
FP8_TYPE w;
}
float8x4_t;
template <typename scalar_t>
__device__ float thread_max_vec(scalar_t const* __restrict__ input,
int64_t const num_elems, int const tid,
int const step) {
// Vectorized input/output to better utilize memory bandwidth.
vec4_t<scalar_t> const* vectorized_in =
reinterpret_cast<vec4_t<scalar_t> const*>(input);
int64_t const num_vec_elems = num_elems >> 2;
float absmax_val = 0.0f;
#pragma unroll 4
for (int64_t i = tid; i < num_vec_elems; i += step) {
vec4_t<scalar_t> in_vec = vectorized_in[i];
absmax_val = max(absmax_val, fabs(in_vec.x));
absmax_val = max(absmax_val, fabs(in_vec.y));
absmax_val = max(absmax_val, fabs(in_vec.z));
absmax_val = max(absmax_val, fabs(in_vec.w));
}
// Handle the remaining elements if num_elems is not divisible by 4
for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
absmax_val = max(absmax_val, fabs(input[i]));
}
return absmax_val;
}
template <typename scalar_t, bool is_scale_inverted>
__device__ void scaled_fp8_conversion_vec(FP8_TYPE* __restrict__ out,
scalar_t const* __restrict__ input,
float const scale,
int64_t const num_elems,
int const tid, int const step) {
// Vectorized input/output to better utilize memory bandwidth.
vec4_t<scalar_t> const* vectorized_in =
reinterpret_cast<vec4_t<scalar_t> const*>(input);
float8x4_t* vectorized_out = reinterpret_cast<float8x4_t*>(out);
int64_t const num_vec_elems = num_elems >> 2;
#pragma unroll 4
for (int64_t i = tid; i < num_vec_elems; i += step) {
vec4_t<scalar_t> in_vec = vectorized_in[i];
float8x4_t out_vec;
out_vec.x = scaled_fp8_conversion<is_scale_inverted>(
static_cast<float>(in_vec.x), scale);
out_vec.y = scaled_fp8_conversion<is_scale_inverted>(
static_cast<float>(in_vec.y), scale);
out_vec.z = scaled_fp8_conversion<is_scale_inverted>(
static_cast<float>(in_vec.z), scale);
out_vec.w = scaled_fp8_conversion<is_scale_inverted>(
static_cast<float>(in_vec.w), scale);
vectorized_out[i] = out_vec;
}
// Handle the remaining elements if num_elems is not divisible by 4
for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
out[i] = scaled_fp8_conversion<is_scale_inverted>(
static_cast<float>(input[i]), scale);
}
}
template <typename scalar_t>
__global__ void scaled_fp8_quant_kernel(FP8_TYPE* __restrict__ out,
const scalar_t* __restrict__ input,
const float* __restrict__ scale,
int64_t num_elems) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
// Invert the scale so that we can use multiplications to avoid expensive
// division.
const float inverted_scale = 1.0f / (*scale);
scaled_fp8_conversion_vec<scalar_t, true>(
out, input, inverted_scale, num_elems, tid, blockDim.x * gridDim.x);
}
template <typename scalar_t>
__global__ void dynamic_per_token_scaled_fp8_quant_kernel(
FP8_TYPE* __restrict__ out, float* __restrict__ scale,
scalar_t const* __restrict__ input, float const* __restrict__ scale_ub,
const int hidden_size) {
float const min_scaling_factor = 1.0f / (FP8_E4M3_MAX * 512.f);
int const tid = threadIdx.x;
int const token_idx = blockIdx.x;
scalar_t const* __restrict__ token_input = &input[token_idx * hidden_size];
FP8_TYPE* __restrict__ token_output = &out[token_idx * hidden_size];
// For vectorization, token_input and token_output pointers need to be
// aligned at 8-byte and 4-byte addresses respectively.
bool const can_vectorize = hidden_size % 4 == 0;
float absmax_val = 0.0f;
if (can_vectorize) {
absmax_val = thread_max_vec(token_input, hidden_size, tid, blockDim.x);
} else {
for (int i = tid; i < hidden_size; i += blockDim.x) {
float const x = static_cast<float>(token_input[i]);
absmax_val = max(absmax_val, fabs(x));
}
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStorage;
float const block_absmax_val_maybe =
BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x);
__shared__ float token_scale;
if (tid == 0) {
if (scale_ub) {
token_scale = min(block_absmax_val_maybe, *scale_ub);
} else {
token_scale = block_absmax_val_maybe;
}
// token scale computation
token_scale = max(token_scale / FP8_E4M3_MAX, min_scaling_factor);
scale[token_idx] = token_scale;
}
__syncthreads();
// Note that we don't use inverted scales so we can match FBGemm impl.
if (can_vectorize) {
scaled_fp8_conversion_vec<scalar_t, false>(
token_output, token_input, token_scale, hidden_size, tid, blockDim.x);
} else {
for (int i = tid; i < hidden_size; i += blockDim.x) {
token_output[i] = scaled_fp8_conversion<false>(
static_cast<float>(token_input[i]), token_scale);
}
}
}
} // namespace vllm
void static_scaled_fp8_quant(torch::Tensor& out, // [..., d]
torch::Tensor const& input, // [..., d]
torch::Tensor const& scale) // [1]
{
int64_t num_tokens = input.numel() / input.size(-1);
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "scaled_fp8_quant_kernel", [&] {
vllm::scaled_fp8_quant_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<FP8_TYPE>(), input.data_ptr<scalar_t>(),
scale.data_ptr<float>(), num_elems);
});
}
void dynamic_scaled_fp8_quant(torch::Tensor& out, // [..., d]
torch::Tensor const& input, // [..., d]
torch::Tensor& scale) // [1]
{
int64_t num_tokens = input.numel() / input.size(-1);
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "scaled_fp8_quant_kernel", [&] {
vllm::segmented_max_reduction<scalar_t><<<grid, block, 0, stream>>>(
scale.data_ptr<float>(), input.data_ptr<scalar_t>(), num_elems);
vllm::scaled_fp8_quant_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<FP8_TYPE>(), input.data_ptr<scalar_t>(),
scale.data_ptr<float>(), num_elems);
});
}
void dynamic_per_token_scaled_fp8_quant(
torch::Tensor& out, // [..., d]
torch::Tensor const& input, // [..., d]
torch::Tensor& scales, std::optional<at::Tensor> const& scale_ub) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "dynamic_per_token_scaled_fp8_quant_kernel", [&] {
vllm::dynamic_per_token_scaled_fp8_quant_kernel<scalar_t>
<<<grid, block, 0, stream>>>(
out.data_ptr<FP8_TYPE>(), scales.data_ptr<float>(),
input.data_ptr<scalar_t>(),
scale_ub.has_value() ? scale_ub->data_ptr<float>() : nullptr,
hidden_size);
});
}