
FIX issue https://github.com/vllm-project/vllm/issues/9688 https://github.com/vllm-project/vllm/issues/11086 #12487 --------- Signed-off-by: Jee Jee Li <pandaleefree@gmail.com> Co-authored-by: weilong.yu <weilong.yu@shopee.com> Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
549 lines
24 KiB
Python
549 lines
24 KiB
Python
"""A GPU worker class."""
|
|
import gc
|
|
import os
|
|
from typing import Dict, List, Optional, Set, Tuple, Type, Union
|
|
|
|
import torch
|
|
import torch.distributed
|
|
|
|
import vllm.envs as envs
|
|
from vllm.config import VllmConfig
|
|
from vllm.device_allocator.cumem import CuMemAllocator
|
|
from vllm.distributed import (ensure_kv_transfer_initialized,
|
|
ensure_model_parallel_initialized,
|
|
init_distributed_environment,
|
|
set_custom_all_reduce)
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.model_executor import set_random_seed
|
|
from vllm.model_executor.layers.sampler import SamplerOutput
|
|
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
|
|
from vllm.platforms import current_platform
|
|
from vllm.prompt_adapter.request import PromptAdapterRequest
|
|
from vllm.sequence import (ExecuteModelRequest, IntermediateTensors,
|
|
SequenceGroupMetadata, SequenceGroupMetadataDelta)
|
|
from vllm.utils import (GiB_bytes, MemorySnapshot, bind_kv_cache,
|
|
memory_profiling)
|
|
from vllm.worker.cache_engine import CacheEngine
|
|
from vllm.worker.enc_dec_model_runner import EncoderDecoderModelRunner
|
|
from vllm.worker.model_runner import GPUModelRunnerBase, ModelRunner
|
|
from vllm.worker.pooling_model_runner import PoolingModelRunner
|
|
from vllm.worker.worker_base import (LocalOrDistributedWorkerBase, WorkerBase,
|
|
WorkerInput)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class Worker(LocalOrDistributedWorkerBase):
|
|
"""A worker class that executes (a partition of) the model on a GPU.
|
|
|
|
Each worker is associated with a single GPU. The worker is responsible for
|
|
maintaining the KV cache and executing the model on the GPU. In case of
|
|
distributed inference, each worker is assigned a partition of the model.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
local_rank: int,
|
|
rank: int,
|
|
distributed_init_method: str,
|
|
is_driver_worker: bool = False,
|
|
model_runner_cls: Optional[Type[GPUModelRunnerBase]] = None,
|
|
) -> None:
|
|
WorkerBase.__init__(self, vllm_config)
|
|
self.parallel_config.rank = rank
|
|
self.local_rank = local_rank
|
|
self.rank = rank
|
|
self.distributed_init_method = distributed_init_method
|
|
self.is_driver_worker = is_driver_worker
|
|
if self.model_config.trust_remote_code:
|
|
# note: lazy import to avoid importing torch before initializing
|
|
from vllm.utils import init_cached_hf_modules
|
|
init_cached_hf_modules()
|
|
|
|
# Return hidden states from target model if the draft model is an
|
|
# mlp_speculator
|
|
speculative_config = self.speculative_config
|
|
model_config = self.model_config
|
|
speculative_args = {} if speculative_config is None \
|
|
or (speculative_config.draft_model_config.model ==
|
|
model_config.model) \
|
|
or (speculative_config.draft_model_config.hf_config.model_type
|
|
not in ["medusa", "mlp_speculator", "eagle"]) \
|
|
else {"return_hidden_states": True}
|
|
|
|
ModelRunnerClass: Type[GPUModelRunnerBase] = ModelRunner
|
|
if model_config.runner_type == "pooling":
|
|
ModelRunnerClass = PoolingModelRunner
|
|
elif self.model_config.is_encoder_decoder:
|
|
ModelRunnerClass = EncoderDecoderModelRunner
|
|
self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
|
|
vllm_config=self.vllm_config,
|
|
kv_cache_dtype=self.cache_config.cache_dtype,
|
|
is_driver_worker=is_driver_worker,
|
|
**speculative_args,
|
|
)
|
|
if model_runner_cls is not None:
|
|
self.model_runner = model_runner_cls(self.model_runner)
|
|
|
|
# Uninitialized cache engine. Will be initialized by
|
|
# initialize_cache.
|
|
self.cache_engine: List[CacheEngine]
|
|
# Initialize gpu_cache as pooling models don't initialize kv_caches
|
|
self.gpu_cache: Optional[List[List[torch.Tensor]]] = None
|
|
self._seq_group_metadata_cache: Dict[str, SequenceGroupMetadata] = {}
|
|
|
|
# Torch profiler. Enabled and configured through env vars:
|
|
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
|
|
if envs.VLLM_TORCH_PROFILER_DIR:
|
|
torch_profiler_trace_dir = envs.VLLM_TORCH_PROFILER_DIR
|
|
logger.info("Profiling enabled. Traces will be saved to: %s",
|
|
torch_profiler_trace_dir)
|
|
self.profiler = torch.profiler.profile(
|
|
activities=[
|
|
torch.profiler.ProfilerActivity.CPU,
|
|
torch.profiler.ProfilerActivity.CUDA,
|
|
],
|
|
with_stack=True,
|
|
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
|
torch_profiler_trace_dir, use_gzip=True))
|
|
else:
|
|
self.profiler = None
|
|
|
|
def start_profile(self):
|
|
if self.profiler is None:
|
|
raise RuntimeError("Profiler is not enabled.")
|
|
self.profiler.start()
|
|
|
|
def stop_profile(self):
|
|
if self.profiler is None:
|
|
raise RuntimeError("Profiler is not enabled.")
|
|
self.profiler.stop()
|
|
|
|
def sleep(self, level: int = 1) -> None:
|
|
free_bytes_before_sleep = torch.cuda.mem_get_info()[0]
|
|
allocator = CuMemAllocator.get_instance()
|
|
allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
|
|
free_bytes_after_sleep, total = torch.cuda.mem_get_info()
|
|
freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
|
|
used_bytes = total - free_bytes_after_sleep
|
|
assert freed_bytes >= 0, "Memory usage increased after sleeping."
|
|
logger.info(
|
|
"Sleep mode freed %.2f GiB memory, "
|
|
"%.2f GiB memory is still in use.", freed_bytes / GiB_bytes,
|
|
used_bytes / GiB_bytes)
|
|
|
|
def wake_up(self) -> None:
|
|
allocator = CuMemAllocator.get_instance()
|
|
allocator.wake_up()
|
|
|
|
def init_device(self) -> None:
|
|
if self.device_config.device.type == "cuda":
|
|
# torch.distributed.all_reduce does not free the input tensor until
|
|
# the synchronization point. This causes the memory usage to grow
|
|
# as the number of all_reduce calls increases. This env var disables
|
|
# this behavior.
|
|
# Related issue:
|
|
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
|
|
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
|
|
|
|
# This env var set by Ray causes exceptions with graph building.
|
|
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
|
|
self.device = torch.device(f"cuda:{self.local_rank}")
|
|
torch.cuda.set_device(self.device)
|
|
|
|
_check_if_gpu_supports_dtype(self.model_config.dtype)
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
self.baseline_snapshot = MemorySnapshot()
|
|
else:
|
|
raise RuntimeError(
|
|
f"Not support device type: {self.device_config.device}")
|
|
# Initialize the distributed environment.
|
|
init_worker_distributed_environment(self.vllm_config, self.rank,
|
|
self.distributed_init_method,
|
|
self.local_rank)
|
|
# Set random seed.
|
|
set_random_seed(self.model_config.seed)
|
|
|
|
def load_model(self):
|
|
if self.vllm_config.model_config.enable_sleep_mode:
|
|
allocator = CuMemAllocator.get_instance()
|
|
assert allocator.get_current_usage() == 0, (
|
|
"Sleep mode can only be "
|
|
"used for one instance per process.")
|
|
context = allocator.use_memory_pool(tag="weights")
|
|
else:
|
|
from contextlib import nullcontext
|
|
context = nullcontext()
|
|
with context:
|
|
self.model_runner.load_model()
|
|
|
|
def save_sharded_state(
|
|
self,
|
|
path: str,
|
|
pattern: Optional[str] = None,
|
|
max_size: Optional[int] = None,
|
|
) -> None:
|
|
self.model_runner.save_sharded_state(
|
|
path,
|
|
pattern=pattern,
|
|
max_size=max_size,
|
|
)
|
|
|
|
def save_tensorized_model(
|
|
self,
|
|
tensorizer_config: TensorizerConfig,
|
|
) -> None:
|
|
self.model_runner.save_tensorized_model(
|
|
tensorizer_config=tensorizer_config, )
|
|
|
|
@torch.inference_mode()
|
|
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
|
"""Profiles the peak memory usage of the model to determine how many
|
|
KV blocks may be allocated without OOMs.
|
|
|
|
The engine will first conduct a profiling of the existing memory usage.
|
|
Then, it calculate the maximum possible number of GPU and CPU blocks
|
|
that can be allocated with the remaining free memory.
|
|
|
|
.. tip::
|
|
You may limit the usage of GPU memory
|
|
by adjusting the `gpu_memory_utilization` parameter.
|
|
"""
|
|
# Profile the memory usage of the model and get the maximum number of
|
|
# cache blocks that can be allocated with the remaining free memory.
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
free_memory_pre_profile, total_gpu_memory = torch.cuda.mem_get_info()
|
|
|
|
# Execute a forward pass with dummy inputs to profile the memory usage
|
|
# of the model.
|
|
with memory_profiling(
|
|
self.baseline_snapshot,
|
|
weights_memory=self.model_runner.model_memory_usage) as result:
|
|
self.model_runner.profile_run()
|
|
|
|
self._assert_memory_footprint_increased_during_profiling()
|
|
|
|
memory_for_current_instance = total_gpu_memory * \
|
|
self.cache_config.gpu_memory_utilization
|
|
available_kv_cache_memory = (memory_for_current_instance -
|
|
result.non_kv_cache_memory)
|
|
|
|
# Calculate the number of blocks that can be allocated with the
|
|
# profiled peak memory.
|
|
cache_block_size = self.get_cache_block_size_bytes()
|
|
if cache_block_size == 0:
|
|
num_gpu_blocks = 0
|
|
num_cpu_blocks = 0
|
|
else:
|
|
num_gpu_blocks = int(available_kv_cache_memory // cache_block_size)
|
|
num_cpu_blocks = int(self.cache_config.swap_space_bytes //
|
|
cache_block_size)
|
|
num_gpu_blocks = max(num_gpu_blocks, 0)
|
|
num_cpu_blocks = max(num_cpu_blocks, 0)
|
|
|
|
msg = (f"Memory profiling takes {result.profile_time:.2f} seconds\n"
|
|
"the current vLLM instance can use "
|
|
"total_gpu_memory "
|
|
f"({(total_gpu_memory / GiB_bytes):.2f}GiB)"
|
|
" x gpu_memory_utilization "
|
|
f"({self.cache_config.gpu_memory_utilization:.2f})"
|
|
f" = {(memory_for_current_instance / GiB_bytes):.2f}GiB\n"
|
|
"model weights take "
|
|
f"{(result.weights_memory / GiB_bytes):.2f}GiB;"
|
|
" non_torch_memory takes "
|
|
f"{(result.non_torch_increase / GiB_bytes):.2f}GiB;"
|
|
" PyTorch activation peak memory takes "
|
|
f"{(result.torch_peak_increase / GiB_bytes):.2f}GiB;"
|
|
" the rest of the memory reserved for KV Cache is "
|
|
f"{(available_kv_cache_memory / GiB_bytes):.2f}GiB.")
|
|
|
|
logger.info(msg)
|
|
# Final cleanup
|
|
gc.collect()
|
|
|
|
return num_gpu_blocks, num_cpu_blocks
|
|
|
|
def _assert_memory_footprint_increased_during_profiling(self):
|
|
# NOTE(woosuk): Here we assume that the other processes using the same
|
|
# GPU did not change their memory usage during the profiling.
|
|
free_gpu_memory, total = torch.cuda.mem_get_info()
|
|
cuda_memory = total - free_gpu_memory
|
|
assert self.baseline_snapshot.cuda_memory < cuda_memory, (
|
|
"Error in memory profiling. "
|
|
f"Initial used memory {self.baseline_snapshot.cuda_memory}, "
|
|
f"currently used memory {cuda_memory}. "
|
|
f"This happens when the GPU memory was "
|
|
"not properly cleaned up before initializing the vLLM instance.")
|
|
|
|
def initialize_cache(self, num_gpu_blocks: int,
|
|
num_cpu_blocks: int) -> None:
|
|
"""Allocate GPU and CPU KV cache with the specified number of blocks.
|
|
|
|
This also warms up the model, which may record CUDA graphs.
|
|
"""
|
|
raise_if_cache_size_invalid(num_gpu_blocks,
|
|
self.cache_config.block_size,
|
|
self.cache_config.is_attention_free,
|
|
self.model_config.max_model_len)
|
|
|
|
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
|
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
|
|
|
if self.vllm_config.model_config.enable_sleep_mode:
|
|
allocator = CuMemAllocator.get_instance()
|
|
context = allocator.use_memory_pool(tag="kv_cache")
|
|
else:
|
|
from contextlib import nullcontext
|
|
context = nullcontext()
|
|
with context:
|
|
self._init_cache_engine()
|
|
self._warm_up_model()
|
|
|
|
def _init_cache_engine(self):
|
|
assert self.cache_config.num_gpu_blocks is not None
|
|
self.cache_engine = [
|
|
CacheEngine(self.cache_config, self.model_config,
|
|
self.parallel_config, self.device_config)
|
|
for _ in range(self.parallel_config.pipeline_parallel_size)
|
|
]
|
|
self.gpu_cache = [
|
|
self.cache_engine[ve].gpu_cache
|
|
for ve in range(self.parallel_config.pipeline_parallel_size)
|
|
]
|
|
bind_kv_cache(self.compilation_config.static_forward_context,
|
|
self.gpu_cache)
|
|
|
|
def _warm_up_model(self) -> None:
|
|
# warm up sizes that are not in cudagraph capture sizes,
|
|
# but users still want to compile for better performance,
|
|
# e.g. for the max-num-batched token size in chunked prefill.
|
|
warmup_sizes = self.vllm_config.compilation_config.compile_sizes.copy()
|
|
if not self.model_config.enforce_eager:
|
|
warmup_sizes = [
|
|
x for x in warmup_sizes if x not in
|
|
self.vllm_config.compilation_config.cudagraph_capture_sizes
|
|
]
|
|
for size in sorted(warmup_sizes, reverse=True):
|
|
logger.info("Compile and warming up model for size %d", size)
|
|
self.model_runner._dummy_run(size)
|
|
if not self.model_config.enforce_eager:
|
|
self.model_runner.capture_model(self.gpu_cache)
|
|
# Reset the seed to ensure that the random state is not affected by
|
|
# the model initialization and profiling.
|
|
set_random_seed(self.model_config.seed)
|
|
|
|
@property
|
|
def do_metadata_broadcast(self) -> bool:
|
|
return self.parallel_config.tensor_parallel_size > 1
|
|
|
|
@property
|
|
def kv_cache(self) -> Optional[List[List[torch.Tensor]]]:
|
|
return self.gpu_cache
|
|
|
|
@torch.inference_mode()
|
|
def prepare_worker_input(
|
|
self, execute_model_req: ExecuteModelRequest) -> WorkerInput:
|
|
virtual_engine = execute_model_req.virtual_engine
|
|
num_steps = execute_model_req.num_steps
|
|
num_seq_groups = len(execute_model_req.seq_group_metadata_list)
|
|
# `blocks_to_swap_in` and `blocks_to_swap_out` are cpu tensors.
|
|
# they contain parameters to launch cudamemcpyasync.
|
|
blocks_to_swap_in = torch.tensor(execute_model_req.blocks_to_swap_in,
|
|
device="cpu",
|
|
dtype=torch.int64).view(-1, 2)
|
|
blocks_to_swap_out = torch.tensor(execute_model_req.blocks_to_swap_out,
|
|
device="cpu",
|
|
dtype=torch.int64).view(-1, 2)
|
|
# `blocks_to_copy` is a gpu tensor. The src and tgt of
|
|
# blocks to copy are in the same device, and `blocks_to_copy`
|
|
# can be used directly within cuda kernels.
|
|
blocks_to_copy = torch.tensor(execute_model_req.blocks_to_copy,
|
|
device=self.device,
|
|
dtype=torch.int64).view(-1, 2)
|
|
|
|
return WorkerInput(
|
|
num_seq_groups=num_seq_groups,
|
|
blocks_to_swap_in=blocks_to_swap_in,
|
|
blocks_to_swap_out=blocks_to_swap_out,
|
|
blocks_to_copy=blocks_to_copy,
|
|
virtual_engine=virtual_engine,
|
|
num_steps=num_steps,
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def execute_worker(self, worker_input: WorkerInput) -> None:
|
|
virtual_engine = worker_input.virtual_engine
|
|
# Issue cache operations.
|
|
if (worker_input.blocks_to_swap_in is not None
|
|
and worker_input.blocks_to_swap_in.numel() > 0):
|
|
self.cache_engine[virtual_engine].swap_in(
|
|
worker_input.blocks_to_swap_in)
|
|
if (worker_input.blocks_to_swap_out is not None
|
|
and worker_input.blocks_to_swap_out.numel() > 0):
|
|
self.cache_engine[virtual_engine].swap_out(
|
|
worker_input.blocks_to_swap_out)
|
|
if (worker_input.blocks_to_copy is not None
|
|
and worker_input.blocks_to_copy.numel() > 0):
|
|
self.cache_engine[virtual_engine].copy(worker_input.blocks_to_copy)
|
|
|
|
def _get_cached_seq_group_metadata(
|
|
self,
|
|
seq_group_metadata_list: List[Union[SequenceGroupMetadata,
|
|
SequenceGroupMetadataDelta]],
|
|
finished_request_ids: List[str]) -> List[SequenceGroupMetadata]:
|
|
"""Return a list of cached Sequence Group Metadata after updating its
|
|
state.
|
|
|
|
It is used because scheduler only sends delta to workers to reduce
|
|
the data payload size. The function also cleans up cache based on
|
|
a given `finished_request_ids`.
|
|
"""
|
|
new_seq_group_metadata_list = []
|
|
for metadata_or_delta in seq_group_metadata_list:
|
|
request_id = metadata_or_delta.request_id
|
|
if request_id not in self._seq_group_metadata_cache:
|
|
# The first prefill.
|
|
assert isinstance(metadata_or_delta, SequenceGroupMetadata)
|
|
self._seq_group_metadata_cache[request_id] = metadata_or_delta
|
|
else:
|
|
# The first prefill is already cached.
|
|
if isinstance(metadata_or_delta, SequenceGroupMetadataDelta):
|
|
self._seq_group_metadata_cache[request_id].apply_delta(
|
|
metadata_or_delta)
|
|
else:
|
|
# If metadata snapshot is sent again, it is
|
|
# preempted. Reset the cache because we need to start
|
|
# from scratch.
|
|
assert isinstance(metadata_or_delta, SequenceGroupMetadata)
|
|
self._seq_group_metadata_cache[
|
|
request_id] = metadata_or_delta
|
|
|
|
new_seq_group_metadata_list.append(
|
|
self._seq_group_metadata_cache[request_id])
|
|
|
|
# Clean up finished ids
|
|
for finished_id in finished_request_ids:
|
|
del self._seq_group_metadata_cache[finished_id]
|
|
|
|
return new_seq_group_metadata_list
|
|
|
|
def _execute_model_spmd(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
) -> Optional[List[SamplerOutput]]:
|
|
if execute_model_req is not None:
|
|
new_seq_group_metadata_list = self._get_cached_seq_group_metadata(
|
|
execute_model_req.seq_group_metadata_list,
|
|
execute_model_req.finished_requests_ids)
|
|
|
|
execute_model_req.seq_group_metadata_list = (
|
|
new_seq_group_metadata_list)
|
|
output = super()._execute_model_spmd(execute_model_req,
|
|
intermediate_tensors)
|
|
return output
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
return self.model_runner.add_lora(lora_request)
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
return self.model_runner.remove_lora(lora_id)
|
|
|
|
def pin_lora(self, lora_id: int) -> bool:
|
|
return self.model_runner.pin_lora(lora_id)
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
return self.model_runner.list_loras()
|
|
|
|
def add_prompt_adapter(
|
|
self, prompt_adapter_request: PromptAdapterRequest) -> bool:
|
|
return self.model_runner.add_prompt_adapter(prompt_adapter_request)
|
|
|
|
def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
|
|
return self.model_runner.remove_lora(prompt_adapter_id)
|
|
|
|
def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
|
|
return self.model_runner.pin_prompt_adapter(prompt_adapter_id)
|
|
|
|
def list_prompt_adapters(self) -> Set[int]:
|
|
return self.model_runner.list_prompt_adapters()
|
|
|
|
@property
|
|
def max_model_len(self) -> int:
|
|
return self.model_config.max_model_len
|
|
|
|
@property
|
|
def vocab_size(self) -> int:
|
|
return self.model_runner.vocab_size
|
|
|
|
def get_cache_block_size_bytes(self) -> int:
|
|
"""Get the size of the KV cache block size in bytes.
|
|
"""
|
|
return CacheEngine.get_cache_block_size(self.cache_config,
|
|
self.model_config,
|
|
self.parallel_config)
|
|
|
|
|
|
def init_worker_distributed_environment(
|
|
vllm_config: VllmConfig,
|
|
rank: int,
|
|
distributed_init_method: Optional[str] = None,
|
|
local_rank: int = -1,
|
|
) -> None:
|
|
"""Initialize the distributed environment."""
|
|
parallel_config = vllm_config.parallel_config
|
|
set_custom_all_reduce(not parallel_config.disable_custom_all_reduce)
|
|
|
|
init_distributed_environment(parallel_config.world_size, rank,
|
|
distributed_init_method, local_rank)
|
|
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
|
|
parallel_config.pipeline_parallel_size)
|
|
|
|
ensure_kv_transfer_initialized(vllm_config)
|
|
|
|
|
|
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
|
|
# Check if the GPU supports the dtype.
|
|
if torch_dtype == torch.bfloat16: # noqa: SIM102
|
|
if not current_platform.has_device_capability(80):
|
|
capability = current_platform.get_device_capability()
|
|
gpu_name = current_platform.get_device_name()
|
|
|
|
if capability is None:
|
|
compute_str = "does not have a compute capability"
|
|
else:
|
|
version_str = capability.as_version_str()
|
|
compute_str = f"has compute capability {version_str}"
|
|
|
|
raise ValueError(
|
|
"Bfloat16 is only supported on GPUs with compute capability "
|
|
f"of at least 8.0. Your {gpu_name} GPU {compute_str}. "
|
|
"You can use float16 instead by explicitly setting the"
|
|
"`dtype` flag in CLI, for example: --dtype=half.")
|
|
|
|
|
|
def raise_if_cache_size_invalid(num_gpu_blocks, block_size, is_attention_free,
|
|
max_model_len) -> None:
|
|
if is_attention_free and num_gpu_blocks != 0:
|
|
raise ValueError("No memory should be allocated for the cache blocks "
|
|
f"for an attention-free model, but {num_gpu_blocks}"
|
|
"blocks are allocated.")
|
|
if not is_attention_free and num_gpu_blocks <= 0:
|
|
raise ValueError("No available memory for the cache blocks. "
|
|
"Try increasing `gpu_memory_utilization` when "
|
|
"initializing the engine.")
|
|
max_seq_len = block_size * num_gpu_blocks
|
|
if not is_attention_free and max_model_len > max_seq_len:
|
|
raise ValueError(
|
|
f"The model's max seq len ({max_model_len}) "
|
|
"is larger than the maximum number of tokens that can be "
|
|
f"stored in KV cache ({max_seq_len}). Try increasing "
|
|
"`gpu_memory_utilization` or decreasing `max_model_len` when "
|
|
"initializing the engine.")
|