vllm/tests/tokenization/test_tokenizer_group.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

217 lines
7.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import asyncio
import os
import sys
from typing import List, Optional
from unittest.mock import patch
import pytest
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer_group import (TokenizerGroup,
get_tokenizer_group)
from vllm.transformers_utils.tokenizer_group.ray_tokenizer_group import (
RayTokenizerGroupPool)
from ..conftest import get_tokenizer_pool_config
class CustomTokenizerGroup(TokenizerGroup):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._i = 0
def encode(self, *args, **kwargs):
self._i += 1
return super().encode(*args, **kwargs)
@pytest.mark.asyncio
@pytest.mark.parametrize("tokenizer_group_type",
[None, "ray", CustomTokenizerGroup])
async def test_tokenizer_group(tokenizer_group_type):
reference_tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer_group = get_tokenizer_group(
get_tokenizer_pool_config(tokenizer_group_type),
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None,
)
assert reference_tokenizer.encode("prompt") == tokenizer_group.encode(
request_id="request_id", prompt="prompt", lora_request=None)
assert reference_tokenizer.encode(
"prompt") == await tokenizer_group.encode_async(
request_id="request_id", prompt="prompt", lora_request=None)
assert isinstance(tokenizer_group.get_lora_tokenizer(None),
PreTrainedTokenizerBase)
assert tokenizer_group.get_lora_tokenizer(
None) == await tokenizer_group.get_lora_tokenizer_async(None)
if tokenizer_group_type is CustomTokenizerGroup:
assert tokenizer_group._i > 0
@pytest.mark.asyncio
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
async def test_tokenizer_group_pool(tokenizer_group_type):
reference_tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer_group_pool = get_tokenizer_group(
get_tokenizer_pool_config(tokenizer_group_type),
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None,
)
# Send multiple requests to the tokenizer group pool
# (more than the pool size)
# and check that all requests are processed correctly.
num_requests = tokenizer_group_pool.pool_size * 5
requests = [
tokenizer_group_pool.encode_async(request_id=str(i),
prompt=f"prompt {i}",
lora_request=None)
for i in range(num_requests)
]
results = await asyncio.gather(*requests)
expected_results = [
reference_tokenizer.encode(f"prompt {i}") for i in range(num_requests)
]
assert results == expected_results
@pytest.mark.asyncio
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
async def test_tokenizer_group_ray_pool_env_var_propagation(
tokenizer_group_type):
"""Test that env vars from caller process are propagated to
tokenizer Ray actors."""
env_var = "MY_ENV_VAR"
class EnvVarCheckerTokenizerGroup(TokenizerGroup):
def ping(self):
assert os.environ.get(env_var) == "1"
return super().ping()
class EnvVarCheckerRayTokenizerGroupPool(RayTokenizerGroupPool):
_worker_cls = EnvVarCheckerTokenizerGroup
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
tokenizer_pool = EnvVarCheckerRayTokenizerGroupPool.from_config(
tokenizer_pool_config,
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None)
with pytest.raises(AssertionError):
tokenizer_pool.ping()
with patch.dict(os.environ, {env_var: "1"}):
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
tokenizer_pool = EnvVarCheckerRayTokenizerGroupPool.from_config(
tokenizer_pool_config,
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None)
tokenizer_pool.ping()
@pytest.mark.asyncio
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
async def test_tokenizer_group_ray_pool_fault_tolerance(tokenizer_group_type):
"""Test that Ray tokenizer pool group can recover from failures and
if that's not possible, mark itself as unhealthy."""
class FailingTokenizerGroup(TokenizerGroup):
def __init__(self,
*args,
fail_at: Optional[List[int]] = None,
**kwargs):
super().__init__(*args, **kwargs)
self.i = 0
self.fail_at = fail_at or []
def encode(self, *args, **kwargs):
self.i += 1
if self.i in self.fail_at:
sys.exit(1)
return super().encode(*args, **kwargs)
class FailingRayTokenizerGroupPool(RayTokenizerGroupPool):
_worker_cls = FailingTokenizerGroup
# Fail at first iteration
fail_at = [1]
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
tokenizer_pool_config,
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None,
fail_at=fail_at)
tokenizer_actors = tokenizer_group_pool.tokenizer_actors.copy()
# Modify fail at to not fail at all (will be re-read when actor is
# re-initialized).
fail_at[0] = 1000
# We should recover successfully.
await tokenizer_group_pool.encode_async(request_id="1",
prompt="prompt",
lora_request=None)
await tokenizer_group_pool.encode_async(request_id="1",
prompt="prompt",
lora_request=None)
# Check that we have a new actor
assert len(tokenizer_group_pool.tokenizer_actors) == len(tokenizer_actors)
assert tokenizer_group_pool.tokenizer_actors != tokenizer_actors
# Fail at first iteration
fail_at = [1]
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
tokenizer_pool_config,
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=None,
fail_at=fail_at)
# We should fail after re-initialization.
with pytest.raises(RuntimeError):
await tokenizer_group_pool.encode_async(request_id="1",
prompt="prompt",
lora_request=None)
# check_health should raise the same thing
with pytest.raises(RuntimeError):
tokenizer_group_pool.check_health()
# Ensure that non-ActorDiedErrors are still propagated correctly and do not
# cause a re-initialization.
fail_at = []
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
tokenizer_pool_config,
tokenizer_id="gpt2",
enable_lora=False,
max_num_seqs=1,
max_input_length=2,
fail_at=fail_at)
tokenizer_actors = tokenizer_group_pool.tokenizer_actors.copy()
# Prompt too long error
with pytest.raises(ValueError):
await tokenizer_group_pool.encode_async(request_id="1",
prompt="prompt" * 100,
lora_request=None)
await tokenizer_group_pool.encode_async(request_id="1",
prompt="prompt",
lora_request=None)
# Actors should stay the same.
assert tokenizer_group_pool.tokenizer_actors == tokenizer_actors