vllm/examples/offline_inference/ray_placement.py
youkaichao bc1bdecebf
[core][distributed] exact ray placement control (#12732)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-06 02:03:19 +08:00

122 lines
4.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""
a simple demonstration to show how to control
the placement of the vLLM workers with Ray.
The key is to set VLLM_RAY_PER_WORKER_GPUS and
VLLM_RAY_BUNDLE_INDICES properly.
"""
import os
import ray
from ray.util.placement_group import placement_group
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
from vllm import LLM
from vllm.worker.worker import Worker
class MyWorker(Worker):
def report_device_id(self) -> str:
from vllm.platforms import current_platform
return current_platform.get_device_uuid(self.device.index)
class MyLLM(LLM):
def __init__(self, *args, bundle_indices: list, **kwargs):
# a hack to make the script work.
# stop ray from manipulating CUDA_VISIBLE_DEVICES
# at the top-level
del os.environ["CUDA_VISIBLE_DEVICES"]
# every worker will use 0.4 GPU, so that we can schedule
# 2 instances on the same GPUs.
os.environ["VLLM_RAY_PER_WORKER_GPUS"] = "0.4"
os.environ["VLLM_RAY_BUNDLE_INDICES"] = ",".join(
map(str, bundle_indices))
print(f"creating LLM with bundle_indices={bundle_indices}")
super().__init__(*args, **kwargs)
class RayTrainingActor:
def report_device_id(self) -> str:
# the argument for get_device_uuid is the index
# of the GPU in the visible devices.
# ray will set CUDA_VISIBLE_DEVICES to the assigned GPUs
from vllm.platforms import current_platform
return current_platform.get_device_uuid(0)
# ray manages 4 GPUs
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
ray.init()
# we want to co-locate vLLM instance and the training actor
# on the same set of GPUs.
# the placement plan is as follows:
# GPU 0 and 1: training actor 0, 1, and vLLM instance 0 (with TP=2)
# GPU 2 and 3: training actor 2, 3, and vLLM instance 1 (with TP=2)
pg = placement_group([{"GPU": 1, "CPU": 0}] * 4)
ray.get(pg.ready())
print(f"placement group has bundles {pg.bundle_specs=}")
training_actors = []
training_actor_device_ids = []
inference_engines = []
inference_engine_device_ids = []
for bundle_index in [0, 1, 2, 3]:
training_actor = ray.remote(
num_cpus=0,
num_gpus=0.4,
scheduling_strategy=PlacementGroupSchedulingStrategy(
placement_group=pg,
placement_group_capture_child_tasks=True,
placement_group_bundle_index=bundle_index,
),
)(RayTrainingActor).remote()
training_actors.append(training_actor)
device_id = ray.get(training_actor.report_device_id.remote())
print(f"training actor {bundle_index} is on {device_id}")
training_actor_device_ids.append(device_id)
for (i, bundle_indices) in enumerate([[0, 1], [2, 3]]):
# IMPORTANT: when creating vLLM instances, we need to
# make sure there are no GPU activities on the target GPUs,
# otherwise, they will interfere with the vLLM memory profiling,
# and cause unexpected behaviors.
llm = ray.remote(
num_cpus=0,
num_gpus=0,
scheduling_strategy=PlacementGroupSchedulingStrategy(
placement_group=pg,
placement_group_capture_child_tasks=True,
),
)(MyLLM).remote(
model="facebook/opt-125m",
enforce_eager=True,
worker_cls=MyWorker,
tensor_parallel_size=2,
distributed_executor_backend="ray",
gpu_memory_utilization=0.4,
bundle_indices=bundle_indices,
)
inference_engines.append(llm)
# don't call any method on the inference engine here,
# otherwise it will block until the vLLM instance is created.
for i, llm in enumerate(inference_engines):
inference_engine_device_ids.append(
ray.get(llm.collective_rpc.remote("report_device_id", args=tuple())))
print(f"inference engine {i} is on {inference_engine_device_ids[-1]}")
# check the placement
# the first two training actors should be
# on the same GPUs as the first inference engine
assert training_actor_device_ids[:2] == inference_engine_device_ids[0]
# the last two training actors should be
# on the same GPUs as the second inference engine
assert training_actor_device_ids[2:] == inference_engine_device_ids[1]