vllm/tests/kernels/test_layernorm.py
2024-09-18 10:38:11 +00:00

62 lines
2.2 KiB
Python

import pytest
import torch
from tests.kernels.utils import opcheck
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.utils import seed_everything
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [7, 83, 4096] # Arbitrary values for testing
HIDDEN_SIZES = [768, 769, 770, 771, 5120, 5124, 5125, 5126, 8192,
8199] # Arbitrary values for testing
ADD_RESIDUAL = [False, True]
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("add_residual", ADD_RESIDUAL)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_rms_norm(
num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
seed_everything(seed)
torch.set_default_device(device)
layer = RMSNorm(hidden_size).to(dtype=dtype)
layer.weight.data.normal_(mean=1.0, std=0.1)
scale = 1 / (2 * hidden_size)
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
x *= scale
residual = torch.randn_like(x) * scale if add_residual else None
# NOTE(woosuk): The reference implementation should be executed first
# because the custom kernel is in-place.
ref_out = layer.forward_native(x, residual)
out = layer(x, residual)
# NOTE(woosuk): LayerNorm operators (including RMS) typically have larger
# numerical errors than other operators because they involve reductions.
# Therefore, we use a larger tolerance.
if add_residual:
torch.testing.assert_close(out[0], ref_out[0], atol=1e-2, rtol=1e-2)
torch.testing.assert_close(out[1], ref_out[1], atol=1e-2, rtol=1e-2)
else:
torch.testing.assert_close(out, ref_out, atol=1e-2, rtol=1e-2)
if residual is not None:
opcheck(torch.ops._C.fused_add_rms_norm,
(x, residual, layer.weight.data, layer.variance_epsilon))
else:
opcheck(torch.ops._C.rms_norm,
(out, x, layer.weight.data, layer.variance_epsilon))