vllm/tests/kernels/test_awq_triton.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

172 lines
5.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Tests for the AWQ Triton kernel.
Run `pytest tests/kernels/test_awq_triton.py`.
"""
import pytest
import torch
from vllm.model_executor.layers.quantization.awq_triton import (
AWQ_TRITON_SUPPORTED_GROUP_SIZES, awq_dequantize_triton, awq_gemm_triton)
from vllm.platforms import current_platform
device = "cuda"
def reverse_awq_order(t: torch.Tensor):
bits = 4
AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7]
reverse_order_tensor = torch.arange(
t.shape[-1],
dtype=torch.int32,
device=t.device,
)
reverse_order_tensor = reverse_order_tensor.view(-1, 32 // bits)
reverse_order_tensor = reverse_order_tensor[:, AWQ_REVERSE_ORDER]
reverse_order_tensor = reverse_order_tensor.view(-1)
t = t[:, reverse_order_tensor] & 0xF
return t
# qweights - [R , C // 8], int32
# scales - [R // G, C ], float16
# zeros - [R // G, C // 8], int32
def awq_dequantize_torch(qweight: torch.Tensor, scales: torch.Tensor,
qzeros: torch.Tensor,
group_size: int) -> torch.Tensor:
if group_size == -1:
group_size = qweight.shape[0]
bits = 4
shifts = torch.arange(0, 32, bits, device=qzeros.device)
iweights = torch.bitwise_right_shift(qweight[:, :, None],
shifts[None, None, :]).to(torch.int8)
iweights = iweights.view(iweights.shape[0], -1)
zeros = torch.bitwise_right_shift(qzeros[:, :, None],
shifts[None, None, :]).to(torch.int8)
zeros = zeros.view(qzeros.shape[0], -1)
zeros = reverse_awq_order(zeros)
iweights = reverse_awq_order(iweights)
iweights = torch.bitwise_and(iweights, (2**bits) - 1)
zeros = torch.bitwise_and(zeros, (2**bits) - 1)
scales = scales.repeat_interleave(group_size, dim=0)
zeros = zeros.repeat_interleave(group_size, dim=0)
return (iweights - zeros) * scales
# qweights - [R , C // 8], int32
# scales - [R // G, C ], float16
# zeros - [R // G, C // 8], int32
@pytest.mark.parametrize("qweight_rows", [3584, 18944, 128, 256, 512, 1024])
@pytest.mark.parametrize("qweight_cols", [448, 576, 4736, 16, 32, 64, 128])
@pytest.mark.parametrize("group_size", AWQ_TRITON_SUPPORTED_GROUP_SIZES)
def test_dequantize(qweight_rows, qweight_cols, group_size):
if group_size == -1:
group_size = qweight_rows
qweight_dtype = torch.int32
scales_rows = qweight_rows // group_size
scales_cols = qweight_cols * 8
scales_dtype = torch.float16
zeros_rows = scales_rows
zeros_cols = qweight_cols
zeros_dtype = torch.int32
current_platform.seed_everything(0)
qweight = torch.randint(0,
torch.iinfo(torch.int32).max,
(qweight_rows, qweight_cols),
dtype=qweight_dtype,
device=device)
scales = torch.rand(scales_rows,
scales_cols,
dtype=scales_dtype,
device=device)
zeros = torch.randint(0,
torch.iinfo(torch.int32).max,
(zeros_rows, zeros_cols),
dtype=zeros_dtype,
device=device)
iweights_triton = awq_dequantize_triton(qweight, scales, zeros)
assert (not torch.any(torch.isinf(iweights_triton))
and not torch.any(torch.isnan(iweights_triton)))
iweights_torch = awq_dequantize_torch(qweight, scales, zeros, group_size)
torch.testing.assert_close(iweights_triton, iweights_torch)
# input - [N, K]
# qweight - [K, M // 8]
# qzeros - [K // G, M // 8]
# scales - [K // G, M]
@pytest.mark.parametrize("N", [1, 2, 4, 8, 14, 17, 23, 32])
@pytest.mark.parametrize("K", [128])
@pytest.mark.parametrize("M", [16, 24, 32])
@pytest.mark.parametrize("group_size", AWQ_TRITON_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("splitK", [1, 8])
def test_gemm(N, K, M, splitK, group_size):
if group_size == -1:
group_size = K
split_k_iters = splitK
input_rows = N
input_cols = K
input_dtype = torch.float32
qweight_rows = input_cols
qweight_cols = M // 8
scales_rows = qweight_rows // group_size
scales_cols = M
scales_dtype = torch.float32
qzeros_rows = scales_rows
qzeros_cols = qweight_cols
current_platform.seed_everything(0)
input = torch.rand((input_rows, input_cols),
dtype=input_dtype,
device=device)
qweight = torch.randint(0,
torch.iinfo(torch.int32).max,
(qweight_rows, qweight_cols),
device=device)
qzeros = torch.randint(0,
torch.iinfo(torch.int32).max,
(qzeros_rows, qzeros_cols),
device=device)
scales = torch.rand((scales_rows, scales_cols),
dtype=scales_dtype,
device=device)
output_triton = awq_gemm_triton(input, qweight, scales, qzeros,
split_k_iters)
assert (not torch.any(torch.isinf(output_triton))
and not torch.any(torch.isnan(output_triton)))
dequantized_weights = awq_dequantize_triton(qweight, scales, qzeros)
output_torch = torch.matmul(input, dequantized_weights)
assert (not torch.any(torch.isinf(output_torch))
and not torch.any(torch.isnan(output_torch)))
torch.testing.assert_close(output_triton.cpu(),
output_torch.cpu(),
atol=1e-1,
rtol=1e-1)