Murali Andoorveedu c5832d2ae9
[Core] Pipeline Parallel Support (#4412)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-02 10:58:08 -07:00

365 lines
13 KiB
Python

# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/models/olmo/modeling_olmo.py
# Copyright 2024 The vLLM team.
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only OLMo model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Tuple
import torch
from torch import nn
from transformers import OlmoConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, SamplerOutput
class OlmoAttention(nn.Module):
"""
This is the attention block where the output is computed as
``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""
def __init__(
self,
config: OlmoConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
self.total_num_heads = config.num_attention_heads
assert self.hidden_size % self.total_num_heads == 0
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.head_dim = self.hidden_size // self.total_num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.clip_qkv = config.clip_qkv
# Attention input projection. Projects x -> (q, k, v)
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
bias=config.attention_bias,
quant_config=quant_config,
)
# Rotary embeddings.
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
)
self.scaling = self.head_dim**-0.5
self.attn = Attention(self.num_heads,
self.head_dim,
scale=self.scaling,
cache_config=cache_config,
quant_config=quant_config)
# Attention output projection.
self.o_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=config.attention_bias,
quant_config=quant_config,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
if self.clip_qkv is not None:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output
class OlmoMLP(nn.Module):
"""
This is the MLP block where the output is computed as
``MLP(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""
def __init__(
self,
config: OlmoConfig,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
# Feed-forward input projection.
self.gate_up_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
# Activation function.
self.act_fn = SiluAndMul()
# Feed-forward output projection.
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
quant_config=quant_config,
)
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class OlmoDecoderLayer(nn.Module):
"""
This is a typical transformer block where the output is
computed as ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""
def __init__(self,
config: OlmoConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
# Attention block.
self.self_attn = OlmoAttention(config, cache_config, quant_config)
# MLP block.
self.mlp = OlmoMLP(config, quant_config)
# LayerNorm
self.input_layernorm = nn.LayerNorm(config.hidden_size,
elementwise_affine=False,
bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
elementwise_affine=False,
bias=False)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
# Attention block.
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(positions, hidden_states, kv_cache,
attn_metadata)
hidden_states = hidden_states + residual
# MLP block.
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class OlmoModel(nn.Module):
def __init__(self,
config: OlmoConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.config = config
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.layers = nn.ModuleList([
OlmoDecoderLayer(config, cache_config, quant_config)
for layer_idx in range(config.num_hidden_layers)
])
self.norm = nn.LayerNorm(config.hidden_size,
elementwise_affine=False,
bias=False)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
"""
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
"""
# Get embeddings of input.
# shape: (batch_size, seq_len, d_model)
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
hidden_states = inputs_embeds
# Apply blocks one-by-one.
for layer_idx, decoder_layer in enumerate(self.layers):
# shape: (batch_size, seq_len, d_model)
hidden_states = decoder_layer(
positions,
hidden_states,
kv_caches[layer_idx],
attn_metadata,
)
# Apply final layer norm.
# shape: (batch_size, seq_len or 1, d_model)
hidden_states = self.norm(hidden_states)
return hidden_states
class OlmoForCausalLM(nn.Module):
"""
Extremely barebones HF model wrapper.
"""
def __init__(self,
config: OlmoConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.config = config
self.model = OlmoModel(config, cache_config, quant_config)
if config.tie_word_embeddings:
self.lm_head_weight = self.model.embed_tokens.weight
else:
self.unpadded_vocab_size = config.vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
self.lm_head_weight = self.lm_head.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head_weight, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)