vllm/tests/entrypoints/openai/test_metrics.py
Mark McLoughlin c386c43ca3
[V1][Metrics] Add per-request prompt/generation_tokens histograms (#12516)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-01-28 22:07:22 +00:00

275 lines
9.2 KiB
Python

import subprocess
import sys
import tempfile
import time
from http import HTTPStatus
import openai
import pytest
import pytest_asyncio
import requests
from prometheus_client.parser import text_string_to_metric_families
from transformers import AutoTokenizer
from ...utils import RemoteOpenAIServer
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
@pytest.fixture(scope="module", params=[True, False])
def use_v1(request):
# Module-scoped variant of run_with_both_engines
#
# Use this fixture to run a test with both v0 and v1, and
# also to conditionalize the test logic e.g.
#
# def test_metrics_exist(use_v1, server, client):
# ...
# expected = EXPECTED_V1_METRICS if use_v1 else EXPECTED_METRICS
# for metric in expected:
# assert metric in response.text
#
# @skip_v1 wouldn't work here because this is a module-level
# fixture - per-function decorators would have no effect
yield request.param
@pytest.fixture(scope="module")
def default_server_args():
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"1024",
"--enforce-eager",
"--max-num-seqs",
"128",
]
@pytest.fixture(scope="module",
params=[
"",
"--enable-chunked-prefill",
"--disable-frontend-multiprocessing",
])
def server(use_v1, default_server_args, request):
if request.param:
default_server_args.append(request.param)
env_dict = dict(VLLM_USE_V1='1' if use_v1 else '0')
with RemoteOpenAIServer(MODEL_NAME, default_server_args,
env_dict=env_dict) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as cl:
yield cl
_PROMPT = "Hello my name is Robert and I love magic"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
_TOKENIZED_PROMPT = tokenizer(_PROMPT)["input_ids"]
_NUM_REQUESTS = 10
_NUM_PROMPT_TOKENS_PER_REQUEST = len(_TOKENIZED_PROMPT)
_NUM_GENERATION_TOKENS_PER_REQUEST = 10
# {metric_family: [(suffix, expected_value)]}
EXPECTED_VALUES = {
"vllm:time_to_first_token_seconds": [("_count", _NUM_REQUESTS)],
"vllm:time_per_output_token_seconds":
[("_count", _NUM_REQUESTS * (_NUM_GENERATION_TOKENS_PER_REQUEST - 1))],
"vllm:e2e_request_latency_seconds": [("_count", _NUM_REQUESTS)],
"vllm:request_prompt_tokens":
[("_sum", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST),
("_count", _NUM_REQUESTS)],
"vllm:request_generation_tokens":
[("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST),
("_count", _NUM_REQUESTS)],
"vllm:request_params_n": [("_count", _NUM_REQUESTS)],
"vllm:request_params_max_tokens":
[("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST),
("_count", _NUM_REQUESTS)],
"vllm:prompt_tokens": [("_total",
_NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)],
"vllm:generation_tokens": [
("_total", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)
],
"vllm:request_success": [("_total", _NUM_REQUESTS)],
}
@pytest.mark.asyncio
async def test_metrics_counts(server: RemoteOpenAIServer,
client: openai.AsyncClient, use_v1: bool):
for _ in range(_NUM_REQUESTS):
# sending a request triggers the metrics to be logged.
await client.completions.create(
model=MODEL_NAME,
prompt=_TOKENIZED_PROMPT,
max_tokens=_NUM_GENERATION_TOKENS_PER_REQUEST)
response = requests.get(server.url_for("metrics"))
print(response.text)
assert response.status_code == HTTPStatus.OK
# Loop over all expected metric_families
for metric_family, suffix_values_list in EXPECTED_VALUES.items():
if use_v1 and metric_family not in EXPECTED_METRICS_V1:
continue
found_metric = False
# Check to see if the metric_family is found in the prom endpoint.
for family in text_string_to_metric_families(response.text):
if family.name == metric_family:
found_metric = True
# Check that each suffix is found in the prom endpoint.
for suffix, expected_value in suffix_values_list:
metric_name_w_suffix = f"{metric_family}{suffix}"
found_suffix = False
for sample in family.samples:
if sample.name == metric_name_w_suffix:
found_suffix = True
# For each suffix, value sure the value matches
# what we expect.
assert sample.value == expected_value, (
f"{metric_name_w_suffix} expected value of "
f"{expected_value} did not match found value "
f"{sample.value}")
break
assert found_suffix, (
f"Did not find {metric_name_w_suffix} in prom endpoint"
)
break
assert found_metric, (f"Did not find {metric_family} in prom endpoint")
EXPECTED_METRICS = [
"vllm:num_requests_running",
"vllm:num_requests_swapped",
"vllm:num_requests_waiting",
"vllm:gpu_cache_usage_perc",
"vllm:cpu_cache_usage_perc",
"vllm:time_to_first_token_seconds_sum",
"vllm:time_to_first_token_seconds_bucket",
"vllm:time_to_first_token_seconds_count",
"vllm:time_per_output_token_seconds_sum",
"vllm:time_per_output_token_seconds_bucket",
"vllm:time_per_output_token_seconds_count",
"vllm:e2e_request_latency_seconds_sum",
"vllm:e2e_request_latency_seconds_bucket",
"vllm:e2e_request_latency_seconds_count",
"vllm:request_prompt_tokens_sum",
"vllm:request_prompt_tokens_bucket",
"vllm:request_prompt_tokens_count",
"vllm:request_generation_tokens_sum",
"vllm:request_generation_tokens_bucket",
"vllm:request_generation_tokens_count",
"vllm:request_params_n_sum",
"vllm:request_params_n_bucket",
"vllm:request_params_n_count",
"vllm:request_params_max_tokens_sum",
"vllm:request_params_max_tokens_bucket",
"vllm:request_params_max_tokens_count",
"vllm:num_preemptions_total",
"vllm:prompt_tokens_total",
"vllm:generation_tokens_total",
"vllm:request_success_total",
"vllm:cache_config_info",
# labels in cache_config_info
"block_size",
"cache_dtype",
"cpu_offload_gb",
"enable_prefix_caching",
"gpu_memory_utilization",
"num_cpu_blocks",
"num_gpu_blocks",
"num_gpu_blocks_override",
"sliding_window",
"swap_space_bytes",
]
EXPECTED_METRICS_V1 = [
"vllm:num_requests_running",
"vllm:num_requests_waiting",
"vllm:prompt_tokens_total",
"vllm:generation_tokens_total",
"vllm:request_prompt_tokens_sum",
"vllm:request_prompt_tokens_bucket",
"vllm:request_prompt_tokens_count",
"vllm:request_generation_tokens_sum",
"vllm:request_generation_tokens_bucket",
"vllm:request_generation_tokens_count",
]
@pytest.mark.asyncio
async def test_metrics_exist(server: RemoteOpenAIServer,
client: openai.AsyncClient, use_v1: bool):
# sending a request triggers the metrics to be logged.
await client.completions.create(model=MODEL_NAME,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0)
response = requests.get(server.url_for("metrics"))
assert response.status_code == HTTPStatus.OK
for metric in (EXPECTED_METRICS_V1 if use_v1 else EXPECTED_METRICS):
assert metric in response.text
def test_metrics_exist_run_batch(use_v1: bool):
if use_v1:
pytest.skip("Skipping test on vllm V1")
input_batch = """{"custom_id": "request-0", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/e5-mistral-7b-instruct", "input": "You are a helpful assistant."}}""" # noqa: E501
base_url = "0.0.0.0"
port = "8001"
server_url = f"http://{base_url}:{port}"
with tempfile.NamedTemporaryFile(
"w") as input_file, tempfile.NamedTemporaryFile(
"r") as output_file:
input_file.write(input_batch)
input_file.flush()
proc = subprocess.Popen([
sys.executable,
"-m",
"vllm.entrypoints.openai.run_batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
"intfloat/e5-mistral-7b-instruct",
"--enable-metrics",
"--url",
base_url,
"--port",
port,
], )
def is_server_up(url):
try:
response = requests.get(url)
return response.status_code == 200
except requests.ConnectionError:
return False
while not is_server_up(server_url):
time.sleep(1)
response = requests.get(server_url + "/metrics")
assert response.status_code == HTTPStatus.OK
proc.wait()