vllm/vllm/plugins/__init__.py
youkaichao c222f47992
[core][bugfix] configure env var during import vllm (#12209)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-01-20 19:35:59 +08:00

81 lines
2.9 KiB
Python

import logging
import os
from typing import Callable, Dict
import torch
import vllm.envs as envs
logger = logging.getLogger(__name__)
# make sure one process only loads plugins once
plugins_loaded = False
def load_plugins_by_group(group: str) -> Dict[str, Callable]:
import sys
if sys.version_info < (3, 10):
from importlib_metadata import entry_points
else:
from importlib.metadata import entry_points
allowed_plugins = envs.VLLM_PLUGINS
discovered_plugins = entry_points(group=group)
if len(discovered_plugins) == 0:
logger.debug("No plugins for group %s found.", group)
return {}
logger.info("Available plugins for group %s:", group)
for plugin in discovered_plugins:
logger.info("name=%s, value=%s", plugin.name, plugin.value)
if allowed_plugins is None:
logger.info("all available plugins for group %s will be loaded.",
group)
logger.info("set environment variable VLLM_PLUGINS to control"
" which plugins to load.")
plugins = {}
for plugin in discovered_plugins:
if allowed_plugins is None or plugin.name in allowed_plugins:
try:
func = plugin.load()
plugins[plugin.name] = func
logger.info("plugin %s loaded.", plugin.name)
except Exception:
logger.exception("Failed to load plugin %s", plugin.name)
return plugins
def load_general_plugins():
"""WARNING: plugins can be loaded for multiple times in different
processes. They should be designed in a way that they can be loaded
multiple times without causing issues.
"""
global plugins_loaded
if plugins_loaded:
return
plugins_loaded = True
# some platform-specific configurations
from vllm.platforms import current_platform
if current_platform.is_xpu():
# see https://github.com/pytorch/pytorch/blob/43c5f59/torch/_dynamo/config.py#L158
torch._dynamo.config.disable = True
elif current_platform.is_hpu():
# NOTE(kzawora): PT HPU lazy backend (PT_HPU_LAZY_MODE = 1)
# does not support torch.compile
# Eager backend (PT_HPU_LAZY_MODE = 0) must be selected for
# torch.compile support
is_lazy = os.environ.get('PT_HPU_LAZY_MODE', '1') == '1'
if is_lazy:
torch._dynamo.config.disable = True
# NOTE(kzawora) multi-HPU inference with HPUGraphs (lazy-only)
# requires enabling lazy collectives
# see https://docs.habana.ai/en/latest/PyTorch/Inference_on_PyTorch/Inference_Using_HPU_Graphs.html # noqa: E501
os.environ['PT_HPU_ENABLE_LAZY_COLLECTIVES'] = 'true'
plugins = load_plugins_by_group(group='vllm.general_plugins')
# general plugins, we only need to execute the loaded functions
for func in plugins.values():
func()