vllm/docs/source/getting_started/amd-installation.rst
Hongxia Yang cf29b7eda4
[ROCm][Hardware][AMD][Doc] Documentation update for ROCm (#4376)
Co-authored-by: WoosukKwon <woosuk.kwon@berkeley.edu>
2024-04-25 18:12:25 -07:00

138 lines
5.9 KiB
ReStructuredText

.. _installation_rocm:
Installation with ROCm
======================
vLLM supports AMD GPUs with ROCm 5.7 and 6.0.
Requirements
------------
* OS: Linux
* Python: 3.8 -- 3.11
* GPU: MI200s (gfx90a), MI300 (gfx942), Radeon RX 7900 series (gfx1100)
* ROCm 6.0 and ROCm 5.7
Installation options:
#. :ref:`Build from source with docker <build_from_source_docker_rocm>`
#. :ref:`Build from source <build_from_source_rocm>`
.. _build_from_source_docker_rocm:
Option 1: Build from source with docker (recommended)
-----------------------------------------------------
You can build and install vLLM from source.
First, build a docker image from `Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ and launch a docker container from the image.
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ uses ROCm 6.0 by default, but also supports ROCm 5.7.
It provides flexibility to customize the build of docker image using the following arguments:
* `BASE_IMAGE`: specifies the base image used when running ``docker build``, specifically the PyTorch on ROCm base image. We have tested ROCm 5.7 and ROCm 6.0. The default is `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`
* `BUILD_FA`: specifies whether to build CK flash-attention. The default is 1. For `Radeon RX 7900 series (gfx1100) <https://rocm.docs.amd.com/projects/radeon/en/latest/index.html>`_, this should be set to 0 before flash-attention supports this target.
* `FX_GFX_ARCHS`: specifies the GFX architecture that is used to build CK flash-attention, for example, `gfx90a;gfx942` for MI200 and MI300. The default is `gfx90a;gfx942`
* `FA_BRANCH`: specifies the branch used to build the CK flash-attention in `ROCm's flash-attention repo <https://github.com/ROCmSoftwarePlatform/flash-attention>`_. The default is `ae7928c`
* `BUILD_TRITON`: specifies whether to build triton flash-attention. The default value is 1.
Their values can be passed in when running ``docker build`` with ``--build-arg`` options.
To build vllm on ROCm 6.0 for MI200 and MI300 series, you can use the default:
.. code-block:: console
$ docker build -f Dockerfile.rocm -t vllm-rocm .
To build vllm on ROCm 6.0 for Radeon RX7900 series (gfx1100), you should specify ``BUILD_FA`` as below:
.. code-block:: console
$ docker build --build-arg BUILD_FA="0" -f Dockerfile.rocm -t vllm-rocm .
To build docker image for vllm on ROCm 5.7, you can specify ``BASE_IMAGE`` as below:
.. code-block:: console
$ docker build --build-arg BASE_IMAGE="rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" \
-f Dockerfile.rocm -t vllm-rocm .
To run the above docker image ``vllm-rocm``, use the below command:
.. code-block:: console
$ docker run -it \
--network=host \
--group-add=video \
--ipc=host \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--device /dev/kfd \
--device /dev/dri \
-v <path/to/model>:/app/model \
vllm-rocm \
bash
Where the `<path/to/model>` is the location where the model is stored, for example, the weights for llama2 or llama3 models.
.. _build_from_source_rocm:
Option 2: Build from source
---------------------------
0. Install prerequisites (skip if you are already in an environment/docker with the following installed):
- `ROCm <https://rocm.docs.amd.com/en/latest/deploy/linux/index.html>`_
- `Pytorch <https://pytorch.org/>`_
- `hipBLAS <https://rocm.docs.amd.com/projects/hipBLAS/en/latest/install.html>`_
For installing PyTorch, you can start from a fresh docker image, e.g, `rocm6.0.2_ubuntu22.04_py3.10_pytorch_2.1.2`, `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`, `rocm/pytorch-nightly`.
Alternatively, you can install pytorch using pytorch wheels. You can check Pytorch installation guild in Pytorch `Getting Started <https://pytorch.org/get-started/locally/>`_
For rocm6.0:
.. code-block:: console
$ pip3 install torch --index-url https://download.pytorch.org/whl/rocm6.0
For rocm5.7:
.. code-block:: console
$ pip install torch --index-url https://download.pytorch.org/whl/rocm5.7
1. Install `Triton flash attention for ROCm <https://github.com/ROCm/triton>`_
Install ROCm's Triton flash attention (the default triton-mlir branch) following the instructions from `ROCm/triton <https://github.com/ROCm/triton/blob/triton-mlir/README.md>`_
2. Optionally, if you choose to use CK flash attention, you can install `flash attention for ROCm <https://github.com/ROCm/flash-attention/tree/flash_attention_for_rocm>`_
Install ROCm's flash attention (v2.0.4) following the instructions from `ROCm/flash-attention <https://github.com/ROCm/flash-attention/tree/flash_attention_for_rocm#amd-gpurocm-support>`_
.. note::
- If you are using rocm5.7 with pytorch 2.1.0 onwards, you don't need to apply the `hipify_python.patch`. You can build the ROCm flash attention directly.
- If you fail to install `ROCm/flash-attention`, try cloning from the commit `6fd2f8e572805681cd67ef8596c7e2ce521ed3c6`.
- ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention.
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
3. Build vLLM.
.. code-block:: console
$ cd vllm
$ pip install -U -r requirements-rocm.txt
$ python setup.py install # This may take 5-10 minutes. Currently, `pip install .`` does not work for ROCm installation
.. tip::
- You may need to turn on the ``--enforce-eager`` flag if you experience process hang when running the `benchmark_thoughput.py` script to test your installation.
- Triton flash attention is used by default. For benchmarking purposes, it is recommended to run a warm up step before collecting perf numbers.
- To use CK flash-attention, please use this flag ``export VLLM_USE_FLASH_ATTN_TRITON=0`` to turn off triton flash attention.
- The ROCm version of pytorch, ideally, should match the ROCm driver version.