vllm/csrc/cpu/torch_bindings.cpp
Li, Jiang 550b2801ad
[CPU][Bugfix] Using custom allreduce for CPU backend (#15934)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-04-02 07:46:47 -07:00

224 lines
8.9 KiB
C++

#include "cache.h"
#include "ops.h"
#include "core/registration.h"
#include <torch/library.h>
std::string init_cpu_threads_env(const std::string& cpu_ids);
void int8_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b, const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const std::optional<torch::Tensor>& bias);
void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b, const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const torch::Tensor& azp_adj,
const std::optional<torch::Tensor>& azp,
const std::optional<torch::Tensor>& bias);
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens);
int64_t init_shm_manager(const std::string& name, const int64_t group_size,
const int64_t rank);
std::string join_shm_manager(int64_t handle, const std::string& name);
void shm_allreduce(int64_t handle, torch::Tensor& data);
void shm_gather(int64_t handle, torch::Tensor& data,
const std::optional<std::vector<torch::Tensor>>& outputs,
int64_t dst);
void shm_all_gather(int64_t handle, const torch::Tensor& data,
torch::Tensor& output);
void shm_send_tensor_list(int64_t handle,
const std::vector<torch::Tensor>& tensor_list,
int64_t dst);
std::vector<torch::Tensor> shm_recv_tensor_list(int64_t handle, int64_t src);
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops
// Attention ops
// Compute the attention between an input query and the cached keys/values
// using PagedAttention.
ops.def(
"paged_attention_v1("
" Tensor! out, Tensor query, Tensor key_cache,"
" Tensor value_cache, int num_kv_heads, float scale,"
" Tensor block_tables, Tensor seq_lens, int block_size,"
" int max_seq_len, Tensor? alibi_slopes,"
" str kv_cache_dtype, Tensor k_scale, Tensor v_scale,"
" int tp_rank, int blocksparse_local_blocks,"
" int blocksparse_vert_stride, int blocksparse_block_size,"
" int blocksparse_head_sliding_step) -> ()");
ops.impl("paged_attention_v1", torch::kCPU, &paged_attention_v1);
// PagedAttention V2.
ops.def(
"paged_attention_v2("
" Tensor! out, Tensor! exp_sums, Tensor! max_logits,"
" Tensor! tmp_out, Tensor query, Tensor key_cache,"
" Tensor value_cache, int num_kv_heads, float scale,"
" Tensor block_tables, Tensor seq_lens, int block_size,"
" int max_seq_len, Tensor? alibi_slopes,"
" str kv_cache_dtype, Tensor k_scale, Tensor v_scale,"
" int tp_rank, int blocksparse_local_blocks,"
" int blocksparse_vert_stride, int blocksparse_block_size,"
" int blocksparse_head_sliding_step) -> ()");
ops.impl("paged_attention_v2", torch::kCPU, &paged_attention_v2);
// Activation ops
// Activation function used in SwiGLU.
ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
ops.impl("silu_and_mul", torch::kCPU, &silu_and_mul);
// Activation function used in GeGLU with `none` approximation.
ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_and_mul", torch::kCPU, &gelu_and_mul);
// Activation function used in GeGLU with `tanh` approximation.
ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_tanh_and_mul", torch::kCPU, &gelu_tanh_and_mul);
// GELU implementation used in GPT-2.
ops.def("gelu_new(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_new", torch::kCPU, &gelu_new);
// Approximate GELU implementation.
ops.def("gelu_fast(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_fast", torch::kCPU, &gelu_fast);
// Quick GELU implementation.
ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_quick", torch::kCPU, &gelu_quick);
// Layernorm
// Apply Root Mean Square (RMS) Normalization to the input tensor.
ops.def(
"rms_norm(Tensor! out, Tensor input, Tensor weight, float epsilon) -> "
"()");
ops.impl("rms_norm", torch::kCPU, &rms_norm);
// In-place fused Add and RMS Normalization.
ops.def(
"fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
"float epsilon) -> ()");
ops.impl("fused_add_rms_norm", torch::kCPU, &fused_add_rms_norm);
// Rotary embedding
// Apply GPT-NeoX or GPT-J style rotary embedding to query and key.
ops.def(
"rotary_embedding(Tensor positions, Tensor! query,"
" Tensor! key, int head_size,"
" Tensor cos_sin_cache, bool is_neox) -> ()");
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
// Quantization
#ifdef __AVX512F__
// Compute int8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
"Tensor? azp) -> ()");
ops.impl("static_scaled_int8_quant", torch::kCPU, &static_scaled_int8_quant);
// Compute int8 quantized tensor and scaling factor
ops.def(
"dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale, "
"Tensor!? azp) -> ()");
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
&dynamic_scaled_int8_quant);
// W8A8 GEMM, supporting symmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm);
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#endif
// SHM CCL
#ifdef __AVX512F__
ops.def("init_shm_manager(str name, int group_size, int rank) -> int",
&init_shm_manager);
ops.def("join_shm_manager(int handle, str name) -> str", &join_shm_manager);
ops.def("shm_allreduce(int handle, Tensor! data) -> ()");
ops.impl("shm_allreduce", torch::kCPU, &shm_allreduce);
ops.def(
"shm_gather(int handle, Tensor data, Tensor[](a!)? outputs, int dst) -> "
"()");
ops.impl("shm_gather", torch::kCPU, &shm_gather);
ops.def(
"shm_all_gather(int handle, Tensor data, Tensor! output) -> "
"()");
ops.impl("shm_all_gather", torch::kCPU, &shm_all_gather);
ops.def(
"shm_send_tensor_list(int handle, Tensor[](a) tensor_list, int dst) -> "
"()");
ops.impl("shm_send_tensor_list", torch::kCPU, &shm_send_tensor_list);
ops.def("shm_recv_tensor_list(int handle, int src) -> Tensor[](a)",
&shm_recv_tensor_list);
#endif
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
// Cache ops
// Swap in (out) the cache blocks from src to dst.
cache_ops.def(
"swap_blocks(Tensor src, Tensor! dst, Tensor block_mapping) -> ()");
cache_ops.impl("swap_blocks", torch::kCPU, &swap_blocks);
// Copy the cache blocks from src to dst.
cache_ops.def(
"copy_blocks(Tensor(a!)[] key_caches, Tensor[](b!) value_caches, "
"Tensor block_mapping) -> ()");
cache_ops.impl("copy_blocks", torch::kCPU, &copy_blocks);
// Reshape the key and value tensors and cache them.
cache_ops.def(
"reshape_and_cache(Tensor key, Tensor value,"
" Tensor! key_cache, Tensor! value_cache,"
" Tensor slot_mapping,"
" str kv_cache_dtype,"
" Tensor k_scale, Tensor v_scale) -> ()");
cache_ops.impl("reshape_and_cache", torch::kCPU, &reshape_and_cache);
cache_ops.def(
"concat_and_cache_mla(Tensor kv_c, Tensor k_pe,"
" Tensor! kv_cache,"
" Tensor slot_mapping,"
" str kv_cache_dtype,"
" Tensor scale) -> ()");
cache_ops.impl("concat_and_cache_mla", torch::kCPU, &concat_and_cache_mla);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _utils), utils) {
// CPU utils
utils.def("init_cpu_threads_env(str cpu_ids) -> str", &init_cpu_threads_env);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cpu), cpu_ops) {
cpu_ops.def(
"mla_decode_kvcache("
" Tensor! out, Tensor query, Tensor kv_cache,"
" float scale, Tensor block_tables, Tensor seq_lens) -> ()");
cpu_ops.impl("mla_decode_kvcache", torch::kCPU, &mla_decode_kvcache);
}
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)