vllm/docs/source/index.md
Russell Bryant ce1917fcf2
[Doc] Create a vulnerability management team (#9925)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-01-06 22:57:32 -08:00

4.3 KiB

Welcome to vLLM!

:align: center
:alt: vLLM
:class: no-scaled-link
:width: 60%
<p style="text-align:center">
<strong>Easy, fast, and cheap LLM serving for everyone
</strong>
</p>

<p style="text-align:center">
<script async defer src="https://buttons.github.io/buttons.js"></script>
<a class="github-button" href="https://github.com/vllm-project/vllm" data-show-count="true" data-size="large" aria-label="Star">Star</a>
<a class="github-button" href="https://github.com/vllm-project/vllm/subscription" data-icon="octicon-eye" data-size="large" aria-label="Watch">Watch</a>
<a class="github-button" href="https://github.com/vllm-project/vllm/fork" data-icon="octicon-repo-forked" data-size="large" aria-label="Fork">Fork</a>
</p>

vLLM is a fast and easy-to-use library for LLM inference and serving.

vLLM is fast with:

  • State-of-the-art serving throughput
  • Efficient management of attention key and value memory with PagedAttention
  • Continuous batching of incoming requests
  • Fast model execution with CUDA/HIP graph
  • Quantization: GPTQ, AWQ, INT4, INT8, and FP8
  • Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
  • Speculative decoding
  • Chunked prefill

vLLM is flexible and easy to use with:

  • Seamless integration with popular HuggingFace models
  • High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more
  • Tensor parallelism and pipeline parallelism support for distributed inference
  • Streaming outputs
  • OpenAI-compatible API server
  • Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, Gaudi® accelerators and GPUs, PowerPC CPUs, TPU, and AWS Trainium and Inferentia Accelerators.
  • Prefix caching support
  • Multi-lora support

For more information, check out the following:

Documentation

:caption: Getting Started
:maxdepth: 1

getting_started/installation/index
getting_started/quickstart
getting_started/examples/examples_index
getting_started/troubleshooting
getting_started/faq
:caption: Models
:maxdepth: 1

models/generative_models
models/pooling_models
models/supported_models
models/extensions/index
:caption: Features
:maxdepth: 1

features/quantization/index
features/lora
features/tool_calling
features/structured_outputs
features/automatic_prefix_caching
features/disagg_prefill
features/spec_decode
features/compatibility_matrix
:caption: Inference and Serving
:maxdepth: 1

serving/offline_inference
serving/openai_compatible_server
serving/multimodal_inputs
serving/distributed_serving
serving/metrics
serving/engine_args
serving/env_vars
serving/usage_stats
serving/integrations/index
:caption: Deployment
:maxdepth: 1

deployment/docker
deployment/k8s
deployment/nginx
deployment/frameworks/index
deployment/integrations/index
:caption: Performance
:maxdepth: 1

performance/optimization
performance/benchmarks

% Community: User community resources

:caption: Community
:maxdepth: 1

community/meetups
community/sponsors
:caption: API Reference
:maxdepth: 2

dev/sampling_params
dev/pooling_params
dev/offline_inference/offline_index
dev/engine/engine_index

% Design Documents: Details about vLLM internals

:caption: Design Documents
:maxdepth: 2

design/arch_overview
design/huggingface_integration
design/plugin_system
design/kernel/paged_attention
design/input_processing/model_inputs_index
design/multimodal/multimodal_index
design/automatic_prefix_caching
design/multiprocessing

% Developer Guide: How to contribute to the vLLM project

:caption: Developer Guide
:maxdepth: 2

contributing/overview
contributing/profiling/profiling_index
contributing/dockerfile/dockerfile
contributing/model/index
contributing/vulnerability_management

Indices and tables

  • {ref}genindex
  • {ref}modindex